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Chapter 1

Introduction

The fabrication of semiconductor devices involves the repetition and
combination of complex processes. Because of the complexity and costs,
a simple “trial-and-error” approach to process design is often infeasi-
ble. However, the power of modern computers allows us to construct
software models that simulate the response of the processes within ac-
ceptable time [1, 2].

The importance of computer simulations lies in their ability to pre-
dict the outcome of manufacturing processes and to provide insight
into the underlying physical phenomena that are being modeled. This
ability becomes even more essential in advanced research, because of-
ten the process cannot be realized physically due to limitations in the
capabilities of current manufacturing equipment.

In the context of process modeling it is often required to perform

parameter extraction. Given a process of the form:

V(@1 o s TPl ey D) = Fppop (T1, -+, Tn) (1.1)

we distinguish between input variables (x1,...,z,) and control param-

eters (p1,.-.,pm). Starting from a set of specifications on the process
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Figure 1: Dependency of the process outputs on the process inputs and
control parameters.

response, we wish to know how to control the process parameters in or-
der to guarantee that the outputs will satisfy the given specifications,
ie. y(z1,...,Zn;P1, .-, Pm) € Yo £ AY.

The extracted parameters in general will define a subset of the pos-
sible range of the process parameters. It is useful and often necessary
to perform simple statistical analyses on the elements of the subset and
obtain bounds on the process latitude, which is a measure of the level
of freedom available in choosing the values of the parameters [3].

This research explores the application of artificial neural networks
(NN) to the parameter extraction problem. As an example, we se-
lect the case of semiconductor manufacturing processes based on X-ray

lithography. In the recent years, a large body of literature has described



the ability of NNs to model very complex systems and to act as universal
function approximators [4, 5, 6]. In semiconductor manufacturing, NNs
have been utilized successfully for modeling and controlling processes
based on plasma etching and reactive ion etching [7, 8, 9, 10, 11, 12, 13].
A previous study in X-ray lithography also indicated that the NN ap-
proach to parameter extraction is more efficient than other numerical
techniques currently used [14]. This research intends to expand the pre-
vious work on NNs in X-ray lithography by exploring empirical rules

for efficient parameter extraction based on artificial neural networks.



Chapter 2

Statement of Problem and

Background

2.1 The Problem of Parameter Extraction

While the approach is general, we will focus the discussion on X-ray
Lithography. In particular, we consider the process of transferring a de-
sired pattern to a silicon wafer. In a typical setup for X-ray lithography,
an X-ray source illuminates a pattern-carrying mask. The pattern on
the mask is defined in a material which either absorbs or transmits X-
rays. The resultant modulated radiation field, modified by diffraction,
is then recorded on the silicon wafer [1] (Fig. 2).

Typical parameters that influence the characteristics of the recorded
pattern include the thickness and material of the absorber on the mask,
and the distance (gap) between the mask and wafer. By controlling
these and other relevant parameters, it is possible to achieve a desired
recorded pattern.

Controlling the process parameters, however, is a non-trivial task.
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Figure 2: Typical X-ray lithography setup.

Diffraction effects, coupled with the interaction of X-rays with the
materials in use, render the process highly non-linear, making an ex-
plicit formulation of the relationship between the parameters and the
recorded pattern essentially impossible [1].

Since an explicit formulation of the process is not known a priori, it
is convenient to view the process as a mapping from an input space to

an output space. To this end, we postulate the existence of a function

(b(xl, T2y 3y TpiP1y D2y - - - ;pm) g (yl’ Y2y - - - ’y(I) (21)

which maps a vector x € R™ of process inputs to a vector y € R4
of process outputs, according to some control parameters (vector p €

R™).



In the framework of the implicit mapping formulation, we can thus

state the parameter extraction problem:

Given a subset Y CY of process outputs which satisfy a
set of manufacturing requirements, identify the subset P C
P of control parameters such that ¢(z1,...,2,; P) = Y

for the “largest” X C X .

Figure 3 shows a pictorial view of the parameter extraction problem for
the case of three dimensional control parameters and outputs spaces. In
general the problem is formulated in R™ and R?. Artificial neural net-

works will be the tool used to solve the parameter extraction problem.

2.2 Previous Work

Many software packages, developed by both academic and commer-
cial institutions, perform simulations relevant to semiconductor man-
ufacturing. PROLITH is an optical lithography modeling suite which
simulates formation of an image by a projection optical system (pat-
tern transfer), and exposure and development of the transferred image

[15]. SAMPLE3D also models pattern transferring [14], while SUPREM



Outputs satisfying process
Extracted Parameters requirements

Process
Outputs Space

Control
Parameters
Space

Figure 3: Pictorial view of the parameter extraction problem.

[16]simulates ion implantation and diffusion, and PISCES device mod-
eling. The ATLAS/ATHENA suites are integrated systems which sim-
ulate the entire fabrication process from pattern transfer, to wafer pro-
cessing, to the final integrated device [17, 18].

The CXrL ToolSet, developed at the Center for X-ray Lithography
of the University of Wisconsin-Madison, is a suite of modeling tools
which simulate the pattern transfer process in the case of X-ray lithog-
raphy. It combines modeling and design tools for the X-ray source,
pattern transfer, and wafer processing [1, 19]. Simulations executed
on the ToolSet provided the data used to develop the neural network

models of this research.



The software packages described above do not implement parame-
ter extraction techniques with artificial neural networks. In fact, often
parameter extraction is performed by calculating process outputs cor-
responding to many different process conditions on a “trial-and-error”
basis. However, the semiconductor manufacturing community has al-
ready reported successful applications of neural networks to process
modeling and control, particularly in the fields of plasma etching and
reactive ion etching. These results encourage us to pursue the neural
network approach, using X-ray lithography as a test case.

Baker, Himmel and May [13] developed a neural network model of a
reactive ion etching process. The model was used to predict the future
values of the control parameters based on their past values and their
corresponding outputs. The prediction capability was integrated into
an alarm system which warns the human operator of any “out of range”
conditions.

Rietman and Lory [9] and Rietman [10] report successful neural
models of plasma etching processes. They illustrate the prediction capa-
bilities and the small error of neural network-based models. In [11], Han
and May described a method by which NNs are used to model plasma-
enhanced chemical vapor deposition (PECVD) processes. These models
are then used in combination with genetic algorithms to synthesize a

process “recipe” for parameter extraction and control. In [12], Nami,



Misman, Erbil, and May illustrate a general technique for construct-
ing a “hybrid” neural model for PECVD, by integrating an abstract
input-output mapping with prior knowledge of the process under in-
vestigation.

In the case of X-ray lithography, Capodieci [14] compared the perfor-
mance of neural networks models with other techniques, such as genetic
algorithms, simulated annealing, and random search. The neural net-
work approach allowed Capodieci to correctly model the process with
less samples of the input-output mapping than the other techniques,
while achieving a better error performance.

The reasons for the success reported by the literature rest in the
properties of artificial neural networks. May [2] and Himmel and May
[20] explain the advantages of using NNs over other numerical tech-
niques in semiconductor manufacturing. NNs are able to model very
complex systems involving many process variables, whereas statistical
models are not able to perform adequately when the number of vari-
ables increases beyond a few. Furthermore, a neural network is not
limited by a priori assumptions on the input-output relationship (lin-
ear, quadratic, cubic, and so on), but rather it is said to “learn” these
relationships by training itself on examples of input-output mappings
(non-parametric modeling) [21].

An important property of NNs is their ability to act as universal

function approrimators, provided that enough data points are collected.
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Several authors have independently published mathematical proofs of
this statement [4, 5, 6]. The issue of collecting enough data points is an
active area of research. While there exist techniques for determining
the size of the data set in the case of statistical process modeling,
formal procedures in the case of NNs have not been developed [2]. This

research will investigate the sampling issue in later chapters.
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Chapter 3

Proposed Solution

3.1 The Process as an Input-Output
Mapping

As described in the previous chapter, artificial neural networks perform
well on problems involving many variables which may be related to each
other by complicated non-linear relationships. In particular, neural
networks “learn” underlying relationships between the process variables
from a set of input-output mappings which act as “examples” of the
process. Therefore, in order to exploit the learning capabilities of neural
networks, we must first formulate the parameter extraction problem as
an input-output mapping.

There is a distinction between the inputs and outputs of the NN
and the inputs and outputs of the process. In our formulation, we can
“train” a neural network to learn the dependency of the process outputs
on the control parameters. The NN inputs are the control parameters
of the process, and the outputs are the process outputs. The process

inputs are kept constant in the NN formulation so they do not appear
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explicitly in the mapping, but rather are taken into account implicitly.

Effectively, the NN approximates the unknown function

G(pla <. apm) |m1,$2,...,xn:> (yla ceey yq) (31)

It is important to obtain an approximation to (3.1), because it could
offer a computationally inexpensive method of obtaining process out-
puts. After learning from a set of example data points, the NN is able to
compute the process outputs in a fraction of the time normally required
by the current simulation tools of the CXrL ToolSet [14]. Therefore, it
becomes more efficient to carry out an exhaustive search of the control
parameters space in order to find a range of values which will guarantee
that the outputs will satisfy certain manufacturing conditions. Using

this methodology, we can extract process parameters as follows:

1. Use the NN approximation to the direct process to obtain more

process outputs as a function of the control parameters.

2. Search the outputs thus obtained for those responses that satisfy

certain conditions imposed by the user.

3. Ezamine the control parameters corresponding to the outputs found

above.

4. Infer general characteristics of the extracted control parameters.

After the problem is formulated as an input-output mapping, we

need to design a neural network that will approximate it. The next
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Process Variables NN Model
Inputs — Fixed
Control Parameters +—— Inputs
Outputs — Outputs

Table 1: Role of the process variables in the NN model.

section briefly describes the general procedure for designing a neural
network. For more detailed descriptions of neural networks, the reader

is referred to [22, 23].

3.2 Neural Network Design

In a typical neural computing project, we must collect the data, “teach”
the neural network the task that we want to perform, and finally test
the designed network. A series of computer simulations carried out on
the CXrL. ToolSet provides the data. The data collected must con-
tain enough information about the process for the NN to approximate
the input-output mapping. Ideally, many data points are to be pro-
vided. However, the simulations necessary to obtain the data are time-
consuming, so some effort should be made to minimize the number
of simulations necessary to design the NN. The issue of collecting an
appropriate set of data points (i.e. the problem of sampling) will be
discussed in chapter 6.

The collected data is split into two disjoint sets, the training set



14

and a smaller testing set. During the training phase, the NN “learns”
the mapping from inputs to outputs from the training set. In order to
asses how well the network has learned the mapping, a measure of error
is adopted. If (yi1,ya,...,y,) is the vector representing the outputs in
the original data, and (1, 92, - - -, J,) is the vector of approximations to
the outputs provided by the NN, we define the sum squared error SSE

as:
q

SSE =3 (y;— 4;)° (3.2)

Jj=1

Training stops after the SSE has reached a required minimum value.
In order to understand how the training process tries to minimize the
SSE, we must briefly discuss the structure of artificial neural networks.

Haykin [22] defines a neural network as follows:

A neural network is a massively parallel distributed pro-
cessor that has a natural propensity for storing experiential
knowledge and making it available for use. It resembles the

brain in two respects:

1. Knowledge s acquired by the network through a learn-

1ng Process.

2. Inter-neuron connection strengths known as synaptic

weights are used to store the knowledge.

The parallel structure of neural networks is illustrated in figure 4. The
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Input layer

Hidden layer
of neurons

Output layer

Figure 4: Structure of a typical neural network.

inputs in the input layer are fed to a set of processing units (neu-
rons) in the hidden layer. The outputs of the hidden neurons are then
processed again by neurons in the output layer. The neurons process
incoming information by applying a non-linear activation function to
linear combinations of the inputs, through the synaptic weights W.
Learning consists of updating the synaptic weights so to minimize the
SSE. Usually, the activation function of the output layer is linear, re-
sulting in a neural network which is a linear combination of non-linear
activation functions acting upon the inputs. Activation functions com-

monly used are:

e logarithmic sigmoid: f(z) =

l1—e—®
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et—e” "

er+te~?®

e hyperbolic tangent: f(z) =

—(c—& 2
e radial basis: f(z) =e =

When the SSE falls below a target threshold, the neural network has
learned the mapping on the training set. However, the network must
be tested on the testing set to verify that the NN mapping is general to
the entire process under investigation, and not limited to the training
set. The inputs from the testing set are applied to the trained network,
and the outputs are compared with the corresponding outputs in the
testing set. The SSE may be used to evaluate the performance of the
network. It is also useful to adopt other measures for the error, namely

the point-by-point error and the point-by-point percent error:

ej = |y; — vl (3.3)

Yi — Yj
e;~=| J 'J

J

| x 100 (3.4)

The learning and testing steps are repeated until good generalization
is achieved (Fig. 5).

The next chapters will present applications of the concepts and tech-
niques introduced here. Neural networks will be used to extract process
parameters in the case of a pattern produced by X-ray lithography. We
will specify the inputs and the outputs to the neural network, the net-

work architectures used, and the results achieved.
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Figure 5: The training procedure for a neural network.
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Chapter 4

Implementation of a Case

Study

4.1 Description of Case Study

A case study was analyzed in order to evaluate the performance of
neural networks on the parameter extraction problem. The data were
collected from simulations carried out on the CXrL ToolSet. We first
define the parameters involved in the simulations, and then describe
the NN implementation.

Figure 6 depicts the set-up modeled in the case study. X-rays illumi-
nate a mask consisting of a 2 um thick silicon nitride (SiN) membrane
and a binary pattern of absorbing material (tungsten). The binary
pattern is a sequence of lines, 0.13 ym wide, separated by spaces, also
0.13 pm wide. This lines/spaces pattern is repeated 8 times, making
the total width of the pattern 2.08 ym. The resulting intensity profile
propagates in Helium through the gap. The blur parameter is a lumped

quantity used to account for noise and vibration during the exposure
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X-rays
SiN membrane 2 microns
[0 [ @@ @O Tungsten
.13 absorber
microns
Blur
PMMA
100 nm

Figure 6: The case study under investigation.

[1]. It is expressed mathematically as the variance of a Gaussian distri-
bution, and in the case study it assumed a fixed value of 26 nm. Finally,
the modulated intensity hits the surface of the silicon wafer, where a
layer of photoresist material is encoded with the resultant aerial image
pattern (Fig. 7). The photoresist used was PMMA, with a thickness
of 100 nm.

The parameters described above constitute the input parameters of
the process, and from the point of view of the neural network imple-

mentation, they are kept constant. The control parameters, however,
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Figure 7: A sample aerial image encoded in 100 nm of PMMA.
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Input (Fized) Parameters
Membrane SiN, 2 pm thick
Absorber Tungsten
Pattern Lines/Spaces, 0.13 ym
Blur 26 nm
Photoresist PMMA, 100 nm

Control Parameters
Absorber Thickness 200 to 400 nm
Gap 10 to 30 pm
Bias -18 to 26 nm
Output Parameters
Linewidth (LW)
Fidelity

Table 2: Summary table of the parameters in the case study

are changed during the simulation run and the resultant process out-
puts are observed. The control parameters used in the case study were
the thickness of the absorber, the gap between the mask and the wafer
planes, and the bias, which is a parameter used to control slight vari-
ations in the width of the absorber. Table 2 summarizes the values of
the parameters used in the case study.

In order to evaluate the effect of the control parameters on the out-
puts, two figures of merit (FOM) were used: the linewidth (LW) and
the Fidelity. The LW is computed by thresholding the intensity dis-
tribution of a cross-section of the aerial image at the photoresist plane
(Fig. 8). The fidelity may be intuitively described as an average of the

pixel-by-pixel difference between the aerial image and a target image
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Figure 8: Linewidth measurement from a cross-section of the intensity
profile.

which is considered “ideal.” If we denote the intensity distribution of
the target and aerial images by T'(z,y) and R(z,y) respectively, the

mathematical expression for the fidelity is [24]:

F=1_— ff(T(x,y) — R(.T,y))2 dzx dy
JJT(z,y)?dzdy

where 1 is the best possible value and -oo is the worst.

(4.1)

The rationale for using the LW and Fidelity as the FOMs of choice
is that they provide information about both the physical dimension and
the quality of the pattern in the resist. The combination of these two

FOMs allows us to decide which outputs are desirable and which are
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to be rejected. Correspondingly, the control parameters that generate

desirable outputs are deemed acceptable, while the others are rejected.

4.2 Neural Network Implementation

After obtaining the data from the ToolSet, we may design a neural

network that approximates the mapping:
(THICKNESS,GAP, BIAS) = (LW, FIDELITY) (4.2)

Effectively, we construct a neural mapping that models the dependency
of the process outputs on the control parameters, while keeping the in-
puts constant. The neural mapping allows us to expedite the process
of obtaining many process outputs. A simulation run on the ToolSet
takes from a few minutes to several hours to compute, so obtaining
thousands of process output values is cumbersome. The neural net-
work allows computation of many process outputs in a few seconds.
Since the neural network offers a computationally efficient method
of computing a large number of process outputs, it is possible to ex-
haustively search numerous responses for the values which satisfy cer-
tain requirements. In particular, we can search for the LW /fidelity pair
which is closest to a nominal value (critical dimension, or CD), while
achieving the best possible quality. The values of the control parame-

ters corresponding to the best outputs will be the extracted values.
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Often, we are not interested only in an approximation to the “op-
timum” values of the parameters, but also in the range of values that
will guarantee that the outputs will fall in an acceptable range. For ex-
ample, we can search for the values of the LW which are within £10%
of the target CD, and for the values of the fidelity which are closest
to 1 (the best possible value). The control parameters corresponding
to such outputs will define a subset P of the entire control parameter
space P.

Analyzing the distribution of the parameters within P helps us un-
derstand how much freedom we have in choosing the parameter values
while still achieving acceptable outputs. Again, the neural network al-
lows us speed up the step of acquiring enough data points to perform

analyses of the physical process.
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Chapter 5

Case Study Results

5.1 Neural Network Performance

A neural network was constructed to approximate the mapping
(THICKNESS,GAP,BIAS) = (LW,FIDELITY). The neural
network used radial basis functions in the hidden layer and a linear
activation function in the output layer. The training set consisted of
125 input-output examples, sampled on a regular grid in the control
parameter space (5 samples per parameter, taken in all possible com-
binations). Inputs and outputs were scaled between 0 and 1 to avoid
ill-conditioned matrices and minimize numerical precision effects dur-
ing training [23]. The NN was trained to achieve a sum-squared error of
107° or better on the training set, resulting in 112 radial basis neurons
(Fig. 9). The training phase took approximately 37 seconds of CPU
time on an HP 9000 workstation.

The trained NN was tested on 1327 input-output points which were
not used for the training phase, and the corresponding errors were

evaluated. Figure 10 show the percent error on the testing set. For the
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Parameter Sample Points
Abs. thickness | [200, 240, 300, 360, 400] nm
Gap [10, 14, 20, 26, 30] pum
Bias [-18, -10, 2, 14, 26] nm
Total samples 5Xdxb=125

Table 3: Sample points used during training.

Sum-Squared Error

-6 L L L L

L L L L L L L
10 20 30 40 50 60 70 80 90 100 110 120
Training Iteration

Figure 9: Convergence of the sum-squared error toward the error goal
during neural network training.
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Figure 10: Percent error of the neural network on the outputs in the
testing set: (a) percent error on the linewidth and (b) percent error on

the fidelity.

LW, the error is lower than approximately 2% and for the fidelity it is
below 1%. It is also instructive to observe the histogram plot of the
error, as in figure 11. We notice immediately that most of the errors
are clustered around zero, indicating that the NN is able to output the
process responses adequately. In particular, for the LW, the median
value of the error is 0.39 nm, and the maximum error is below 3 nm. For
the fidelity, the median value of the error is 0.0011, and the maximum

is 0.0063 (Table 4).
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Figure 11: Normalized distribution of the error of the neural network
on the outputs in the testing set.

LW Error | Fidelity Error
% | nm | % | (no units)
mean 0.44 1 0.56 | 0.19 | 0.0014
maximum | 2.06 | 2.91 | 0.89 0.0063
median 0.3210.39 | 0.14 | 0.0011

Table 4: Statistics of the magnitude of the NN error on the testing set.
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5.2 Parameter Extraction with Trained

Neural Network

5.2.1 Exhaustive Search

We can use the NN model to obtain more process outputs and then
perform an exhaustive search for the “best” values. The neural model
was used to compute 9261 extra outputs. It took approximately 17
seconds of CPU time to carry out the simulation with the NN model,
while the CXrL ToolSet would have taken several days.

The extra outputs were searched in order to find the LW closest to
130 nm with the requirement that the value of the fidelity be greater
or equal to 90% of the best value (in our case greater than 0.7702,
because the best value was 0.8558). The search found that the closest
LW was 129.99 nm with a fidelity of 0.8297. The corresponding control
parameters were (280 nm, 21 gm, -11 nm) for the absorber thickness,
gap, and bias respectively.

A ToolSet simulation carried out using the values of the extracted
triplet resulted in a LW /fidelity pair of (130.56 nm, 0.8261), confirming
that the NN successfully learned the input-output mapping underlying
the process. As further verification, the control parameters correspond-
ing to different target LWs were extracted and the corresponding out-

puts computed with the ToolSet. Table 5 summarizes the results, and



Target LW | Extracted Parameters | Neural Net | ToolSet
(thickness, gap, bias) Output Output

130 nm 280 nm, 21 pym, -11 nm | 129.99 nm | 130.65 nm
0.8297 0.8261

120 nm 280 nm, 24 pm, -5 nm | 120.00 nm | 120.21 nm
0.8440 0.8460

110 nm 230 nm, 15 pgm, 13 nm | 109.98 nm | 110.64 nm
0.7730 0.7765

30

Table 5: Comparison of NN output and ToolSet output for control pa-
rameters corresponding to different target LWs and fidelity within 10%
of the mazimum.

again confirms that the exhaustive search strategy is successful in find-

ing the process parameters.

5.2.2 Process Latitude

When performing parameter extraction, it is also desirable to gain in-
sight into the process latitude. It is not sufficient to extract the “op-
timum” values of the control parameters, because in a manufacturing
setting measurement noise is always present. Therefore, it may not be
possible to use exactly and only the optimum values. However, we may
still obtain acceptable process outputs for a range of values of the con-
trol parameters. The process latitude helps us understand how much
freedom the process allows us in setting the control parameters while
still producing desirable image patterns.

To evaluate the process latitude, we can search the 9261 data points
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produced by the NN for those values which fall within an acceptable
range. Typically, a LW variation of £10% around a target CD is con-
sidered acceptable. In the case study we searched for process outputs
within +10% of 130 nm for the LW and within the top 10% for the
fidelity. The reason for searching for these values is that we would like
to obtain linewidths as close as possible to 130 nm, while still achieving
the best possible aerial image quality.

The control parameters resulting in outputs that satisfy our search
criterion define a subset of the control parameters space. Figure 12
shows a plot of the surface that includes this region. All the control
parameters triplets inside the region guarantee that the process outputs
will satisfy the requirements. This means that the acceptable region
does not intersect the non-acceptable region of the parameter space.

Displaying the volume in figure 12 gives us information about the
location of the acceptable parameters. We can also observe how these
parameters are distributed. Figure 13 shows the bar plots of the nor-
malized distribution of the values of the absorber thickness, gap, and
bias which fall inside the volume. We can see that the values of the
parameters in the “middle” of the range are more frequent than the
ones closer to the extreme values. This is particularly severe for the
bias. The significance of this result is that we have more latitude in

choosing the absorber thickness and the gap, than the bias.
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Figure 12: The acceptable region in the control parameters space. All
points inside the region delimited by the surface guarantee a LW of 130

nm £10% and a fidelity within 10% of the mazimum.
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5.2.3 Process Latitude for Strict Conditions on the
Outputs

We can further exploit the computational speed of the neural model
to search for those parameters which correspond to LW /fidelity pairs
that satisfy even more restrictive conditions. We can search for the
parameters which yield a LW of ezactly 130 nm (within the NN error
boundaries) and restrict the choice to those which also give a fidelity
value within 5% of the maximum. The following discussion describes
this procedure, and serves as a verification of the speed and accuracy of
the NN approach, as well as an illustration of its possible applications
to the analysis of the underlying physical process.

Figure 14 displays the dependency of the linewidth on the absorber
thickness and gap for a fixed bias of -11 nm. The surface was calcu-
lated by feeding the NN a very fine mesh of inputs. On the surface,
the contour curve corresponding to a constant LW = 130 nm is em-
phasized. This curve represents the location in the parameter space
of all the (THICKNESS,GAP) |pias=—11nm Pairs that will produce a
LW of exactly 130 nm. Similarly, we can display the dependency of the
linewidth on the absorber thickness and the bias (with fixed gap) and
on the gap and bias (with fixed thickness). Figures 15 and 16 repre-
sent the resultant dependencies, for a fixed gap of 21 ym and a fixed

absorber thickness of 280 nm respectively. Again, the contour curves
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Figure 14: Dependency of the linewidth on the absorber thickness and
gap, for the case of bias = -11 nm. The dark curve represents the set
of parameters which yield exactly a linewidth of 130 nm.

corresponding to the pairs (THICKNESS, BIAS) |gap=214m and to
the pairs (GAP, BIAS) |thickness—280nm Which result in a LW of 130 nm
are highlighted by dark lines.

If we repeat this procedure for different values of the fixed thickness,
gap, and bias, we obtain different curves. All together, these curves
define a surface in the 3-D parameter space. Any triplet of process

parameters chosen on this surface will result in a LW of 130 nm. Figure
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Figure 15: Dependency of the linewidth on the absorber thickness and
bias, for the case of gap = 21 um. The dark curve represents the set of
parameters which yield exactly a linewidth of 130 nm.
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Figure 17: The surface of constant LW = 130 nm plotted in the control
parameter space. This surface was obtained by combining the contour
plots of figures 14-16 for various values of the fixed control parameter.

17 shows such a surface.

Although all the points on the surface in figure 17 will yield a
linewidth of 130 nm, they might not yield a fidelity that is acceptable.
Again, we can exploit the neural formulation of the process to compute
many process responses and search for those values which satisfy the
requirement that the fidelity be within 5% of the maximum. Concep-

tually, this operation is equivalent to finding the intersection between
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the surface of constant linewidth and the volume which encloses all the
parameters which yield the best fidelity values. Figure 18 shows the
superposition of the surface with the “cloud” of points which defines
such volume.

The points belonging to the intersection of the surface with the vol-
ume can be easily found by feeding the points on the surface of constant
LW of figure 17 to the NN and then searching the fidelity output for
the desired values. The end result of this search is a surface of points
in the parameter space which is contained in the surface of constant
LW (Fig. 19). This result shows that a subset of the parameters on
the surface of constant LW satisfy the fidelity requirement. Figure 19
is color-coded, with lighter shades indicating a better (higher) fidelity
and darker shades indicating a worse (lower) one. However, all points
satisfy the minimum requirement that they yield fidelity values within
5% of the maximum.

Finally, we can observe the distribution of the newly found param-
eters and the corresponding process responses, as was done previously
with the less restrictive conditions (Figs. 20 and 21). For the absorber
thickness, we observe that the no values less than 200 nm are accept-
able, and that there is a distinguishable peak at the values of 270 nm
and 280 nm. Also, it is not possible to achieve the desired LW /fidelity
pair with less than 13 pum for the gap. The values of the bias are even

more restricted, as no values above 10 nm or below -16 nm are allowed.
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Figure 18: The surface of constant LW = 130 nm and the “cloud” of
points representing the volume which encloses the parameters yielding
fidelity values in the best 5%. The points that belong to both the sur-
face and the volume (dotted part of the surface) represent the desired
parameters.
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Figure 19: Location of the parameters which yield a linewidth of 130
nm and a fidelity within 5% of the mazimum value. The points super-
imposed on the surface of constant LW are color-coded, to indicate their
corresponding values of the fidelity. Note that these points are a subset
of the points belonging to the surface of constant linewidth.
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The distributions of the LW /fidelity pairs corresponding to the ex-
tracted points confirm that the LW is 130 nm (within the error of the
neural net model) and that the fidelity is above the desired value. It is
interesting to note that in spite of the fact that the values of the fidelity
are among the best 5%, the very best value (0.8558 in the case study)

cannot be achieved for a linewidth of 130 nm.
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Figure 20: Normalized distributions of the process parameters corre-
sponding to a LW of exactly 130 nm and a fidelity within 5% of the
mazximum value.
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responses.
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Chapter 6

Discussion of Results

In light of the results of the previous chapter, we can formulate a frame-
work in which a software tool could be added to the CXrL ToolSet. We
will discuss the issue of sampling the data to obtain the training set,

neural network architectures, and parameter extraction procedures.

6.1 The Sampling Problem

The motivation for developing a neural model was that we needed a
faster way to generate the data points necessary for an adequate analy-
sis of the physical phenomena underlying the process. During the course
of this investigation, different neural network structures were used.
The backpropagation, backpropagation with momentum, Levenberg-
Marquardt algorithms, and radial-basis function networks were tested.
In the end, radial-basis networks resulted in the best generalization (i.e.
least error).

A problem that is still an active area of research is sampling the
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data. In the case study, a training set obtained by sampling the pa-
rameter space on a regular grid yielded good generalization. It is desir-
able to sample the neural network input variables uniformly, because
we want the NN to learn the input-output relationship underlying the
process equally well on the entire parameter space [25, 23]. In our case,
the data is generated via computer simulations, so it is easy to specify
the locations of the samples.

A limitation of using uniform sampling is that the training set grows
quickly as the number of input variables increases (curse of dimension-
ality). If we have N input variables, and each is sampled uniformly at
M values, then the training set will contain M* samples. For example,
in our case we had N = 3 input variable, with M = 5 samples per
variable, resulting in a training set of size T = 53 = 125. If we wanted
to analyze the effects of 4 variables, using the same sampling strategy
would result in a training set of 625 samples. Since our motivation is
to obtain data points more quickly than currently possible with the
ToolSet, the advantage of using neural networks decreases as the num-
ber of variables increases. However, if the costs associated with time
are of secondary importance, neural networks are the tool of choice for
highly dimensional problems, in which traditional statistical techniques
may be cumbersome to implement [21].

It may be possible to alleviate the curse of dimensionality by adopt-

ing a different strategy which can still induce the neural network to
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learn the input-output mapping over the entire parameter space. In-
stead of sampling a few values of each parameter, and then combining
all the values in all possible combinations, we could randomly sample
the wvector formed by the parameters. In this way we can still obtain
125 points, but each individual parameter will assume (approximately)
125 values, thus providing a much broader coverage of its range. In a
computer simulation setting, this can be achieved easily.

Another sampling technique that has received attention is active
sampling [26, 27, 28, 29, 30, 31, 32]. All the surveyed versions of ac-
tive sampling start with a neural network trained on a small number of
training samples. An algorithm then chooses the next samples adap-
tively, with the goal of minimizing the NN error. These techniques
result in training sets which are in general smaller than the ones gen-
erated from random sampling of the parameters space.

There are two difficulties with the application of active sampling to
our case study. In some cases, it is still not clear how to extend the
algorithms to multi-dimensional problems. Secondly, these techniques
introduce some overhead computations, and we must evaluate the cost
of applying them [27]. In other words, we need to investigate whether
the time spent optimizing the size of the training set (and consequently
the neural network structure) will save computation time in the long

rumn.
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Radial-basis networks resulted in shorter training time and bet-
ter error performance, in agreement with previous results [14, 26, 33].
While this type of NN could be trained on 125 data points in about 37
seconds on an HP 9000 workstation, backpropagation and backprop-
agation with the Levenberg-Marquardt algorithm did not converge or
yielded poor error performance even after several hours of training.

A possible limitation of radial-basis networks is that they could
result in NN structures with many neurons in the hidden layer. The
reason for this behavior lies in the nature of radial-basis networks. They
are superpositions of non-linear functions which learn the “local” be-
havior on the process, around a sample data point. Therefore, a good
approximation to the “global” behavior may require the superposition

of many “local” processing units [33, 34].

6.2 A Parameter Extraction Tool for the

CXrL ToolSet

From the above discussion, we can conclude that a neural network
combined with regular sampling of the parameters constitutes a good
starting point for developing a parameter extraction methodology. We
now wish to propose a framework for implementing a parameter ex-
traction software tool in the CXrL ToolSet. This framework can be

presented in several steps.
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Data generation. Generate a table of input-output data points
with the ToolSet. Use uniform sampling of the variables to determine
the size of the training set. The training set should contain the max-
imum and minimum values of each parameters. In addition, generate
the points to be used in the testing set. In the case study, we used
1327 points in the testing set (10 times greater than the training set),
but generally 10% to 20% of the size of the training set is adequate for
testing [22, 23].

NN training. Train a radial-basis neural network on the training
set and verify that it generalizes well on the testing set. After a good
NN is obtained, store the weights of the network in a file. These weights
can be retrieved when using the NN to obtain more process points.

Parameter extraction. Use the NN model of the process to gener-
ate many more points. Store these input-output data in a table format
in a file. Search the process outputs for those values that satisfy certain
requirements. For example, search for the values of the fidelity that are
within 5% of the maximum. This search can be repeated for other pa-
rameters, or combined with previous searches. For example, among the
points with the “best” fidelity, we can search for the parameters that
result in a LW which is very close to a target LW,. The definition of
target LW or any other desirable output characteristics can be defined
by the user. When the searches are completed, extract the parameters

corresponding to the outputs by table look-up.



20

Process latitude analysis. It is possible to analyze the extracted
parameters to determine the process latitude and gain insight into the
physical process. In the previous chapter, we illustrated how the ex-
tracted parameters lie on a surface or within a volume in the parameter
space. Visualizing the results of the extraction is a useful technique that
helps us understand the process. Neural networks are the tools that
allow us to compute process responses quickly, and make the analysis

of the results more manageable.
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Chapter 7

Conclusion

The objective of the work described in this research was to explore the
applications of artificial neural networks to the problem of parameter
ertraction in the framework of semiconductor manufacturing process
modeling. While this approach is general, we chose X-ray lithography
as a case study.

Neural networks can approximate an input-output mapping arbi-
trarily well, and provide a tool for analyzing highly-dimensional prob-
lems with relative ease. We have shown that a neural model of the
physical process under investigation allows us to quickly compute many
data points which can later be used for statistical studies and process
characterization.

In the course of this research work, we were also able to provide
results about the parameter extraction problem that was chosen as
a case study. We showed that the process parameters that result in
responses with desired characteristics belong to a surface (or volume)
contained in the parameter space. The tool that allowed us to carry

out this analysis in a quick and efficient way was the neural model that
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we built.

We have proposed a framework which could act a basis for the devel-
opment of a neural network-based parameter extraction software tool
to be incorporated in the CXrL ToolSet. We have provided practi-
cal suggestions for building and training the neural network, as well
as suggestions for future development. In particular, the issue of data
sampling is of primary importance if we want to improve the efficiency
of the approach even further. Active sampling is a technique which has
received attention in the literature. However, it remains to be evalu-
ated whether the computational overhead introduced by this technique

outweighs the benefits that it introduces.
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