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1 Introduction 

The electronic distribution of music (EDM) via the internet offers potential benefits to both 

sellers and buyers. Sellers benefit because many of the costs of manufacturing, transportation, 

storage and display are reduced or removed. Buyers benefit because they have access to a huge 

catalog of music, with the ability to purchase and enjoy music instantaneously. Despite these 

recognized advantages, the music industry has been slow to adopt EDM. The intransigence on the 

part of the industry is due, in part, to a fear of piracy and a fear of change. However, there is 

growing acceptance that EDM will be a significant distribution channel in the future. There is 

also general agreement that for EDM to be successful, there will need to be a system for Digital 

Rights Management (DRM).  

 

We define a DRM system as one that registers ownership of content, and monitors and controls 

its use. Ultimately, the purpose of DRM systems is to facilitate proper compensation for the rights 

owners and creators of music. Regardless of the degree of control used in the systems to 

accomplish this, we concluded that identification, by which we mean the ability to recognize a 

copy of a sound recording as being the same as the original, was a necessary system component.  

 

In this article, we describe MusicDNA, an automatic song identification component of a DRM 

system for music [19] that we built at Cantametrix Inc., Bellevue, WA. The key pieces of this 

component are currently being deployed by Gracenote Inc., Berkeley, CA. Our primary objective 

was to design and build a system, in a time frame of about six months, that was accurate and 

  
 



scalable up to millions of songs and millions of simultaneous users. In this article, we provide 

details of MusicDNA, and outline the process by which we arrived at the final system 

configuration. Our goal is to document our experience so that it can serve as a reference to those 

seeking to build a complete DRM system for music.   

 

1.1 System Goals 

We generated a set of broad system goals after extensive consultations with potential customers 

and users. These included record companies, music publishers, the Recording Industry 

Association of America (RIAA), worldwide rights organizations, performance rights 

organizations, peer-to-peer (P2P) file sharing companies, search engines, radio stations, music 

monitoring companies, web broadcasters, software juke box manufacturers, music sellers, third 

party data providers (providing extended meta data, reviews etc), third party commerce providers 

(selling music-related merchandise), musicians, and music fans. Based on the system goals, we 

identified the following set of high-level functional objectives:  

• The system should scale to millions of songs: Based on the world music catalog in 2000, we 

estimated that a system should be able to identify at least 10 million original song recordings. 

• The system should identify both legacy and new music files: From industry sales figures, we 

determined that there are approximately 0.5 trillion copies of sound recordings in existence, 

with approximately 24 billion new copies being added every year. These figures alerted us to 

the fact that tracking legacy music files is at least as important as tracking new music files.  

• The system should be invariant to non-malicious manipulations: The system should be able to 

identify sound recordings that have been subjected to a variety of common manipulations 

such as compression at different bit rates, volume normalization, frequency equalization, etc., 

even if these manipulations render the content altered from the original.  

  
 



• The system should have high accuracy: Accuracy is a function of low false negatives 

(provision of no information) and low false positives (provision of wrong information). 

Potential customers informed us that false negatives are better tolerated than false positives. 

Based on this, we decided that the system should have a maximum false positive rate of 5%.  

• The system should have high throughput: One of the potential uses for DRM is for creating a 

legal P2P service.1 Using throughput figures from operational P2P services, we determined 

that the system should handle 200 million downloads per day, or approximately, 2500 

requests for identification per second.  

• The system should be operable on music devices: There is a demand for music devices, such 

as MP3 players and car and home stereos, that typically have limited computational power 

and storage capacity, and with intermittent or no connectivity to the internet. For effective 

operation on such devices, the identification method used in the DRM system must have high 

computational efficiency and a small footprint. Additionally, the system database of reference 

identifiers must be small enough to fit on the device. 

 
There were several technologies that we could have used for content identification. The most 

popular ones are listed in Table 1, along with their advantages and limitations. From these, we 

chose audio fingerprinting because it was the only technology that met all of our functional 

objectives without requiring industry standardization or major changes in consumer behavior. In 

the following sections, we discuss audio fingerprinting in general and provide details about the 

MusicDNA audio fingerprinting system we designed.  

 
2 Audio fingerprinting technology basics  

In this section, we provide a brief review of audio fingerprinting technology. Systems using this 

technology are commercially available from Relatable, Audible Magic, Auditude, MusicReporter 
                                                 
1 For example, the P2P music service might allow only selective sharing of its offerings. This would require 
identifying tracks that were allowed (white list) or tracks that were not (black list). 

  
 



and Gracenote, among others. When designing a content identification method based on audio 

fingerprinting, there are two main issues to consider: fingerprint generation and fingerprint 

lookup. We will discuss both these issues in this section. 

 

2.1  Fingerprint generation 

For maximum effectiveness, an audio fingerprint must be reasonably small, robust to distortion, 

rich in information, and computationally simple. Additionally, it must be designed for the express 

purpose of identifying sound recordings2.  

 

Techniques to create audio fingerprints fall into two broad categories. The first category includes 

approaches that use descriptive attributes (loudness, tempo, beat, melody [15]), and their 

derivatives (pitch, rhythm structure, brightness [15]). The second category includes approaches 

that are based on more intrinsic attributes of a recording with no explicitly identifiable descriptive 

qualities.   We found that attributes in the first category were better suited to classification, while 

attributes in the second category were much more effective for identification. For the remainder 

of this section, we focus on techniques that use attributes belonging to the second category. 

 

There are several methods [1-19] to compute fingerprints using intrinsic attributes of a recording. 

Almost all the methods involve computing features from the time-frequency spectra of a 

recording. While each is distinctive, all methods follow the broad framework described below:  

1. Time partitioning: The recording is segmented into short time frames (often overlapping for 

robustness). This allows the computation of components of the fingerprint as soon as a frame 

of samples is collected without having to load the entire recording. Depending on the 

                                                 
2 This distinction is key: for identification purposes, the representation of the recording should make it easy 
to distinguish it from any other recording; for classification purposes (clustering recordings according to 
genre, mood, etc.), the representation should not distinguish it from similar-sounding recordings. 

  
 



application, either only a short section (10-45s) from a known or random location, or the 

entire recording is used. Frame sample amplitudes may be weighted using models from 

perceptual coding that represent typical human auditory sensitivity patterns. 

2. Frequency partitioning: Each frame is partitioned into frequency bands. The frame samples 

are transformed into frequency/scale space using the fast fourier transform (FFT), the discrete 

cosine transform (DCT), the wavelet transform (WT), etc. The frequency/scale space is then 

partitioned. A weight function based on psycho-acoustic hearing models may be applied to 

the frequency spectra to attenuate frequencies to which the human ear is not sensitive. The 

type of transform to use and the nature of the frequency partitioning (linear, log, dyadic, etc.) 

are determined by the performance goals, with particular attention paid to balancing the need 

for high identification accuracy with computational and speed requirements. 

3. Fingerprint features computation: The time and frequency partitioning results in time-

frequency (T-F) blocks from which fingerprint features are computed. Examples of features 

are spectral/wavelet residuals [6], LPC coefficients [2], and Mel-frequency cepstral 

coefficients [13]. Even fairly simple features such as those based on statistical moments 

[10],[13], measures of variation of energy across blocks [6],[14], and principal component 

analysis [19] of the matrix of the T-F block energies, are remarkably effective fingerprint 

candidates, provided one partitions the time-frequency space optimally. Typically, several 

different features are extracted and concatenated to form the fingerprint.  

 

Ultimately, the specific technique used to obtain a fingerprint depends on the associated system 

goals. Once such a fingerprint is obtained, a search scheme for fingerprint lookup needs to be 

designed. In order to meet our system goals, we focused on extracting fingerprint features, 

(discussed in detail in Section 3.1) with low computational load, small footprint, reduced database 

storage requirements and high accuracy for moderate noise applications, and designing a lookup 

scheme that offered high throughput. We discuss this below.  

  
 



 
2.2   Fingerprint lookup  

Even the most discriminating and robust fingerprint is rendered ineffective if we cannot design a 

good search scheme to retrieve the best match to a trigger fingerprint from a large database of 

several millions in a short time. There can be achieved using either exact matching or fuzzy 

matching. Performing an exact match usually means using a direct table lookup approach, which 

requires that we obtain fingerprints that are invariant to compression and other common recording 

effects3 - a task almost impossible to achieve. It is more realistic to generate fingerprints that have 

the property that the intra-song (different variants of the same recording) fingerprint variation is 

much smaller than the inter-song (different variants of different recordings) fingerprint variation. 

This suggests the possibility of adopting a “measure of closeness” to compute a match. Such a 

match is by definition, inexact or fuzzy, and requires computing this measure for every entry in 

the database to determine the best match. This process is not practical in large databases. Thus, 

the two main issues to solve in the fuzzy match scenario are: 

a) Formulating an “intelligent” strategy to reduce the search space to a manageable size.  

b) Determining an objective measure of match.   

For purposes of speed and ease of implementation, we need a measure of match that is simple, yet 

effective. Common examples that fit this bill are correlation [10], the Itakura distance [20-21], the 

Manhattan (L1) distance [6], and the Euclidean (L2) distance [1,13]. Appropriately choosing the 

measure of match can greatly enhance the discriminating capability of the identification system. 

 

As noted earlier, it is impractical to compute match measures for every fingerprint in a database 

of millions. We need to partition the entire search space into non-overlapping regions, isolating 

the target song (correct match) in a small set from which we can determine the best match using 

                                                 
3 For example, this means that the fingerprint computed from a song on a CD must be exactly identical to 
the fingerprint of the same song computed from its MP3-encoded version. 

  
 



the chosen match measure. A popular approach to partition a given space is clustering4. In our 

experiments with clustering using several candidate features, we found two serious problems:  

a) Cluster assignment was very sensitive to the initial training set of vectors, and there were no 

clear guidelines as to the best method to pick the training set. 

b) Addition of new data required retraining of all clusters causing cluster reassignment and a 

general shake-up of the existing database structure. 

 
The pitfalls of using clustering led us to explore other options. Our explorations led to the design 

of an alternative approach called the Search by Range Reduction (SRR) technique [19]. The SRR 

is a highly effective, albeit simple, technique to search through massive databases in a reasonable 

time. It works on the principle of a successive pruning of the search space. We start with a search 

space containing all fingerprints in our database (stage 0). At stage J, the search space is reduced 

to all fingerprints in the database whose first J components are each within some distance of the 

first J components of the query fingerprint (FP1, FP2, ...FPJ). The process is continued until the 

search space is pruned to a size small enough to accommodate throughput requirements. The 

simple case of a 2-component fingerprint vector is shown in Figure 1. The chosen measure of 

match is then computed only for the fingerprints in the final pruned space. The SRR method uses 

a vector of ranges (T1, T2, ...TN) for the N fingerprint components for pruning, and a threshold for 

the match computation to determine the final result. Thus, the method has the desirable property 

of disqualifying fingerprints in the search space that may be ‘close’ to the query using the 

measure of match, but differ greatly in shape from the query, as illustrated in Figure 2. We found 

the SRR approach to be robust, fast, effective and highly amenable to database scaling, thus 

satisfying our primary system goals. In the next section, we discuss the MusicDNA system and 

provide details of our implementation of the SRR approach. 

                                                 
4 In this process, the entire space is partitioned into clusters, each of which contains a manageable number 
of entries that are “close” to each other using some chosen criterion. The query to be matched is deemed to 
belong to the cluster to which it is “closest” using the same criterion, and the best match is determined from 
all the entries in this cluster. 

  
 



3 MusicDNA System Design 

The MusicDNA system consists of the MusicDNA Client and the MusicDNA Server. The 

MusicDNA Client extracts the fingerprint, and the MusicDNA Server serves as a lookup engine 

that contains the database of fingerprints and the search algorithm parameters.  

 

3.1 MusicDNA Client - Fingerprint Extraction  

The primary purpose of the MusicDNA Client is to extract the fingerprint from an input 

recording. The fingerprint extraction algorithm it uses consists of two main stages: a signal 

conditioning stage and a signal analysis stage. The conditioning stage reads files in different 

formats corresponding to different codecs, bit rates and sampling frequencies, and transforms 

them into a stream of pulse code modulated (PCM) data representing a monaural analog 

waveform sampled at 11025 Hz. We chose this sampling frequency because it represented a good 

compromise between fingerprint quality and data size. It limits the bandwidth of the input signal 

to 5512 Hz, thus eliminating the high frequencies that are often more susceptible to noise, while 

still retaining enough signal information to allow accurate identification.  

 

The analysis stage executes the core signal processing algorithms and extracts the attributes that 

make up the fingerprint. For speed and efficiency, we chose to analyze only a short section of the 

recording (15s) from a known location, for the fingerprint computation. First, the 15s section is 

divided into 12 frames of 3s each with a frame overlap of 1.9s. Next, histogram equalization is 

applied to the sample amplitudes in each frame to provide robustness to common signal 

manipulations such as volume normalization, followed by the DCT. The result is then partitioned 

into 15 non-overlapping frequency bands with the band edges corresponding to the first 15 bands 

used in the MP3 encoding scheme. We found the combination of the DCT and the MP3-bands 

frequency partitioning highly effective and efficient in terms of discrimination ability and 

  
 



fingerprint size. From each block obtained from the time and frequency partitioning, the total 

block energy is computed, and a 15 x 12 matrix of energies is obtained corresponding to the 15 

frequency bands and the 12 time frames. The process is illustrated in Figure 3.  From this matrix, 

two vectors, each of length 15, are obtained. One vector is the square root of the mean energy 

across time for each frequency band. The second vector is the standard deviation across time of 

the RMS power in each frequency band [19]. The two vectors are normalized individually and 

concatenated to form a 30-component fingerprint. Our choice of fingerprint features was driven 

by our system goals – we chose these features because they were easy to compute, were effective 

at discriminating between millions of recordings using only 30 components, and were reasonably 

robust to moderate distortion.  

 
3.2 MusicDNA Server - Lookup Engine 

The MusicDNA Server is our implementation of an audio fingerprint lookup system. Its core 

functionality includes the ability to accept a fingerprint identification request, quickly identify the 

song, return additional requested metadata or business rules, and log the transaction. In this 

section, we discuss the search process parameter tuning and the general architecture of the Server.  

 

3.2.1 Tuning/Parameter Configuration 

The search algorithm used in the MusicDNA Server to perform identification is the SRR 

technique described earlier, together with the Itakura distance (ID) measure, adapted to our 

needs5. From several competing measures, we chose the Itakura distance measure, despite its 

asymmetric nature, because it provided the best discrimination between different recordings for 

our analysis data sets which were carefully selected sets of fingerprint data that were 

representative of the range of inputs the Server was expected to process. Additionally, using the 
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Itakura distance measure effectively neutralized the effect of having fingerprint component values 

that varied from each other by several orders of magnitude.  

 

The factors that critically affect the efficiency and speed of the SRR search scheme are the order 

in which the fingerprint components are applied to prune the search space, the SRR range vector, 

and the Itakura distance cut-off threshold. We adjusted these parameters to optimize for false 

positive (finding a wrong match) and false negative (failure to find a match) errors, and for search 

speed. We ordered the fingerprint components so that the most discriminating ones were placed 

in the front of the vector. The discriminating capability of each fingerprint component was 

determined based on the reduction in search space size using only that component for a database 

of about 10 thousand songs. This ordering helped prune the search space more efficiently. The 

SRR range vector (T1, T2,...TN) was determined based on the variation (as measured by the 

standard deviation) of each fingerprint component in our analysis data sets. To set the Itakura 

distance cut-off threshold, we did an extensive analysis of the distributions of the correct match 

(measure of intra-song distance) and the best non-match (measure of inter-song distance) on our 

data sets. This enabled us to gain insight into how large we could set the threshold, which would 

lower false negative errors, while still maintaining acceptable false positive error rates.  

 

3.2.2 Server Architecture  

The main function of the MusicDNA Server is to receive fingerprint requests and perform the 

fingerprint lookup in a short time. Since the need for high throughput is critical, we configured 

the Server to use an LRU (Least Recently Used) request cache for all fingerprint lookups. 

Industry representatives informed us that typically, 95% of search requests were for variants of a 

small set of songs. The Server stores fingerprint information for all individual variants of these 

songs and the corresponding song information in the LRU cache. Thus, the Server rarely needs 

  
 



to perform an SRR search in its database for identification; in most cases, it successfully 

identifies the song via a simple table lookup in the cache, greatly increasing the throughput.  

 

The Server processes all fingerprint requests via a MusicDNA Server HTTP Servlet interface, 

and returns its responses in XML. We chose HTTP as the transport interface because it is the 

most widely used protocol; it does not require any special firewall modifications for use, HTTP 

traffic is very difficult to block, and many third party tools are available, including proxy caches 

that may be leveraged in the future to aid in world wide deployment and 3 tier (web 

server/application server/database) scalable architecture components. We selected XML as the 

response format because it allows for flexible data type definition, and many third party tools are 

available. XML is an industry wide standard; parsers for many languages are readily available, 

making it easier for the system to work with different languages and platforms in the future. 

 

4 MusicDNA System Performance   

This section describes MusicDNA performance in terms of its efficacy (robustness and 

sensitivity) and throughput (extraction and lookup speed, and fingerprint footprint).  

 

4.1 Efficacy  

To achieve high efficacy, the fingerprint must minimize intra-song distance (distance to correct 

match in the reference database) while maximizing inter-song distance (distance to best non-

match in the reference database). Figure 4 provides a visual aid for this evaluation. The curves 

shown are the cumulative distribution functions (CDFs) of the intra-song and inter-song distances 

of fingerprints taken from some of our analysis data sets (150 songs each). The reference database 

contained fingerprints of original songs ripped from CDs. We used such CDF plots to determine 

the best fingerprint candidates, the optimum distance measure and cut-off threshold. Observe that 

  
 



robustness and sensitivity are related to the individual CDF slopes and the separation between the 

two CDFs. A good fingerprint should have a steep slope for the correct match CDF, and a gentle 

slope for the best non-match CDF, thus indicating less crowding of the fingerprint search space. It 

should also produce a large separation between the two CDFs, indicating greater sensitivity. The 

crowding effect associated with scaling can often lead to high false positive errors. To allow for 

good scaling performance, we must have large separation on small databases, so that even under 

scaling, there would be sufficient separation to keep error rates at acceptable levels. From 

extensive testing on small (150 songs) and large databases (million+ songs), we found that the 

CDF plots were  reliable predictors of efficacy performance under scaling. If the two distributions 

overlapped or had little separation on small sets, identification errors were more likely to occur 

when the system was scaled up6. With this in mind, we performed several small-scale efficacy 

tests on different data sets and tuned our parameters based on the corresponding CDFs. The 

results after final parameter tuning are shown in Table 2. For comparison, the large-scale efficacy 

results using the same parameters on selected codec variants are shown in Table 3. Observe that 

while there is, as expected, a significant increase in false positive error rates as the database scales 

up, we met our error requirements even under large-scale testing conditions. The false negative 

error rates, which are not much affected by crowding, match well with the results in Table 2.  

  

4.2 Throughput  

To measure system throughput, we obtained benchmarks on the MusicDNA Server using an 

internally developed request generator. We obtained a mean fingerprint extraction time under 2s 

                                                 
6 As database size increases, it becomes increasingly difficult to separate fingerprints effectively as they 
begin to crowd together. Features that work very well on small databases often fail to identify correctly 
when the size of the database increases by several orders of magnitude. In order to get realistic efficacy 
information, it is necessary to test performance of candidate fingerprints against massive databases, a 
process that can often be difficult and time-consuming. Thus, devising a method to predict large-scale 
performance from smaller data sets is very beneficial since testing on smaller data sets is far less time 
consuming. However, while we used the CDF plots to aid parameter tuning, all search parameters were 
finalized after verifying performance on representative database sizes (million+).  

  
 



with a fingerprint footprint under 100 bytes, both well under our target limits. We achieved a 

throughput of 16 lookups/s with a mean lookup time of less then 300 ms running Microsoft 

SQLServer on a single CPU 864 MHz Dell Power Edge 4400 running Win2K. The middle tier 

was running IBM Websphere on a Sun E420 Solaris 2.74CPU 2GRAM machine, and was very 

lightly loaded. Only 2 CPUs were utilized. In order to meet the 2500 lookups/s requirement, we 

would need a maximum of 160 CPUs to handle the SRR load. This was well within our cost 

constraints for full system deployment. However, we expected the actual number of CPUs 

required to be significantly lower, depending on how heavily the LRU cache was used.  

 

5 Conclusions  

In this article, we discussed the need for a DRM system for music, and established that content 

identification was a necessary component for its successful operation. We reviewed common 

methodologies for content identification, with particular focus on audio fingerprinting 

technologies. We then discussed our experience in building a fast and accurate identification 

system using audio fingerprinting for environments with moderate noise7. Specifically, we 

elaborated on the process of defining system goals, developing the system design, architecting the 

system, and evaluating the system performance. The fast look-up, small footprint and database 

storage requirements, while maintaining high efficacy under scaling, are some key factors that 

distinguish our fingerprinting approach from existing fingerprinting technologies.  We hope that 

this article served to provide insight into understanding why DRM systems for music are 

necessary, and to appreciate the challenges of designing effective DRM systems with the 

capability of efficiently handling millions of music recordings. 

 

                                                 
7 For noisy applications such as streaming media, cell phones, etc. with modified/corrupted/incomplete files 
and no prior knowledge of sample location, [2-5, 8-9, 14] offer very robust audio fingerprinting solutions. 
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8 Figures and Tables 

Table 1: Technological alternatives for identifying digital music 
Method Description Advantages Disadvantages 

Tagging Embeds or attaches a 
textual description 

i) Easy to attach i) Easy to remove 

Hashing Creates a hash key based 
on the digital qualities of 
the music file; e.g., 
Secure Hash Algorithm 
(SHA) 

i) Fast and easy to compute 
ii) Can use exact matching 
algorithms to perform 
searches 
iii) Can show if the file has 
been altered 
 

i) Different formats of a 
song will produce different 
hash keys, and so the size of 
the database to incorporate 
all variants of all songs 
would be very large  

Watermarks Places an inaudible and 
indelible signal in the 
music  

i) Can include business rules 
for sharing 
ii) Rules-of-use can be 
imposed by non-networked 
players and devices  
iii) Resistant to noise and 
other non-malicious 
manipulations 

i) Inapplicable to legacy 
content 
ii) Neither inaudible nor 
indelible 
iii) Requires standardization  
iv) Susceptible to hacking  
v) Consumer resistance to 
purchasing hardware that 
does less than before 

Encryption Uses tags or watermarks 
for identification, and in 
addition uses techniques 
to make the music 
unusable without 
possession of a special 
code or key 

i) All of the advantages of 
tagging and watermarking      
ii) Locks up music  
iii) Complex rules of use can 
be associated with individual 
songs 

i) Does not work for legacy 
content                                     
ii) Requires industry 
standardization                         
iii) Consumer resistance to 
purchasing hardware that 
does less than before  

Audio 
fingerprinting  

Uses the inherent 
qualities of the music to 
uniquely identify it by 
comparing it against a 
database of known music 

i) Works for legacy content   
ii) Has no impact on sound 
quality (no additions)  
iii) Does not require industry 
standardization                          
iv) Compatible with other 
methods of protecting music  
v) Completely transparent to 
the consumer  

i) Can be computationally 
intensive                             
ii) Database can be large for 
some implementations 

 
 

  
 



Table 2: Small-scale test results 

Format/Process False Positive False Negative 
MP3 128 kbps 0% 0% 
MP3 32 kbps 

 
0% 3.36% 

WMA 64kbps 0% 0% 
Time shift (0.5 s) 0% 0.84% 

Volume normalization 0% 2.54% 
Pitch invariant speed- 

up by 6% 
0% 0.84% 

 

Table 3: Large-scale test results  

DB Size 217,000 527,000 1,042,000 
Format False 

Positive
False 

Negative
False 

Positive
False 

Negative
False 

Positive 
False 

Negative
MP3 128 kbps (Blade, Lame 
encoders)  

1.53% 0.42% 2.11% 0.4% 2.68% 0.32% 

MP3 32 kbps (Blade, Lame 
encoders) 

1.96% 2.58% 2.69% 2.50% 3.40% 2.33% 

 
 

 
 
 
 
 
 
 

Figure 2: Thick line represents 7-component fingerprint (each dot
represents a component of the fingerprint vector). All fingerprints
in the pruned space lie within the space defined by the dotted lines.
Thus, the actual shape of the query fingerprint determines the
fingerprints included in the pruned search space.  

Figure 1: Square represents the space of all fingerprints
for N = 2. First fingerprint component FP1 with its range
T1 defines the initial pruning of the whole fingerprint
space (horizontal dotted lines). Second fingerprint
component FP2 with its range T2 defines the second
pruning, (vertical dotted lines). Shaded gray rectangular
area defines the space of fingerprints for which distance
measures are computed. 

 
 

  
 



 
Figure 3: The analysis stage of the fingerprint extraction algorithm. The first 15 seconds of the recording are 
processed in 12 overlapping frames of 3 seconds each. Each frame is histogram equalized, and transformed via 
the DCT. The result is divided into 15 frequency bands, and the energy values are computed for each band, to 
form the Time-Frequency matrix. The matrix elements are processed as described in the paper to obtain the 
features that make up the fingerprint.  
 

 
 

Figure 4: Cumulative distribution function (CDF) curves of correct match and best non-match song distances 
for various encoders and effects on sets of 150 songs each. The circles represent the correct match curve, and the 
triangles the best non-match curve. The clear separation between the two curves demonstrates the 
discriminating capability of the fingerprint, and indicates that the underlying fingerprint will hold up well 
under scaling.  
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