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Abstract

We investigate multi-task learning from an output space regularization perspective. Most
multi-task approaches tie together related tasks by constraining them to share input spaces
and function classes. In contrast to this, we propose a multi-task paradigm which we call
output space regularization, in which the only constraint is that the output spaces of the
multiple tasks are related. We focus on a specific instance of output space regulariza-
tion, multi-task averaging, that is both widely applicable and amenable to analysis. The
multi-task averaging estimator improves on the single-task sample average under certain
conditions, which we detail. Our analysis shows that for a simple case the optimal simi-
larity depends on the ratio of the task variance to the task differences, but that for more
complicated cases the optimal similarity behaves nonlinearly. Further, we show that the
estimates produced are a convex combination of the tasks’ sample averages. We discuss
the Bayesian viewpoint. Three applications of multi-task output space regularization are
presented: multi-task kernel density estimation, multi-task-regularized empirical moment
constraints in similarity discriminant analysis, and multi-task local linear regression. Ex-
periments on real data sets show statistically significant gains.

Keywords: multi-task learning, similarity-based regularization, output space regulariza-
tion, manifold regularization, kernel density estimation

1. Introduction

The motivating hypothesis of multi-task learning (MTL) is that combining data from related
estimation tasks can yield superior estimates over learning each task separately. A central
question of MTL is: how should the tasks be combined or tied together? Consider the

c©2011 Feldman et al..

ar
X

iv
:1

10
7.

43
90

v3
  [

st
at

.M
L

] 
 2

7 
Ju

l 2
01

1



Feldman et al.

following visualization of a T -task MTL estimation problem:

X1
f1(x1i;β1)−−−−−−→ Y1

...
...

...

Xt
ft(xti;βt)−−−−−−→ Yt

...
...

...

XT
fT (xTi;βT )−−−−−−−→ YT ,

where Xt is the tth tasks’ input space, Yt is the tth tasks’ output space, and ft(xti, βt) is
the tth tasks’ function that maps input xti ∈ Xt to output yti ∈ Yt and parameterized by
set βt. From the above figure, one observes that the tasks can be tied together through

(a) the input spaces {X1, . . . ,XT };

(b) the parameter or function spaces, and/or,

(c) the output spaces {Y1, . . . ,YT }.

Prior MTL approaches have focused on (a) and (b), assuming that tasks are related
in that they all share an input space (i.e. Xt = X for all t) and/or function class (i.e
ft(x;βt) = f(x;βt) for all t). Some examples:

• Joint dimensionality reduction/selection with respect to all tasks at once (input space).
E.g. Obozinski et al. (2010).

• Jointly regularizing the function parameters βt (parameter space). E.g. Argyriou
et al. (2007).

• Placing joint priors on the βt for all t (parameter space). E.g. Bakker and Heskes
(2003).

• Defining multi-task kernels (implicit input space). E.g. Micchelli and Pontil (2004).

The possibility of (c) has been largely neglected; however, in this work we argue that it
is a natural way to think about the relatedness of tasks. For example, two tasks that we
believe should benefit from multi-task learning are “How long do trees live in the vicinity of
a nuclear meltdown?” and “How long do humans live in the vicinity of a nuclear meltdown?”
These two tasks share an output space (and are likely correlated), but the tasks’ domains
(trees and humans) may be described by unrelated features. In this paper we investigate
cross-task regularization of the task-specific functions’ outputs, a paradigm of multi-task
learning that we call output space regularization (OSR). We show that OSR is both powerful
and widely applicable. OSR enables MTL for tasks that do not share an input space or a
function class; the tasks need only be related in that they aim to estimate related outputs.
The task-specific input spaces and task-specific functions can be completely different.

To elucidate the difference between standard MTL parametric regularization approaches
and OSR, consider the following two example MTL objectives. Let (xti, yti) be input-output
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training pairs for the tth task, with Nt pairs per task. Let A ∈ RT×T be the task similarity
matrix, where Ars is the similarity between tasks r and s. The following MTL objective
explicitly ties the tasks together in the parameter space:

arg min
{βt}Tt=1

T∑
t=1

Nt∑
i=1

(yti − f(xti;βt))
2 + γ

T∑
r=1

T∑
s=1

Ars‖βr − βs‖22. (1)

This regularization results in parameter estimates that are more similar. Consider on the
other hand the following OSR objective

arg min
{βt}Tt=1

T∑
t=1

Nt∑
i=1

(yti − ft(xti;βt))2 + γ
T∑
r=1

T∑
s=1

Nr∑
j=1

Ns∑
k=1

Arj;sk(fr(xrj ;βr)− fs(xsk;βs))2, (2)

where Arj;sk is the task-and-sample similarity between xrj and xsk. The non-parametric
form of (2) regularizes the outputs {f(xti;βt)} of the different tasks, resulting in parameter
estimates that correspond to output estimates that are more similar.

In this paper, we will show that OSR is a flexible, widely applicable, and effective
method with which to approach multi-task learning problems. In the next section we give
the general form of OSR, after which we review related work in multi-task learning, as well
as discuss how OSR is related to manifold regularization (Belkin et al., 2006) in Section 3.

Through the lens of OSR, many estimation problems can be cast in a MTL framework,
and potentially benefit from additional data sharing. In Section 4, we investigate the
simplest application of OSR, which we termmulti-task averaging (MTA). The tractability
of MTA enables an extensive analysis, given in Section 5, which provides some new intuition
and insights about OSR in general. MTA is broadly applicable; we illustrate its use for multi-
task kernel density estimation (MT-KDE) in Section 6, and for specifying the empirical
moment constraints in similarity discriminant analysis in Section 7. Then, in Section 8, we
present a second formulation of OSR - multi-task linear regression. We interpret local linear
regression as a multi-task estimation problem, and show that OSR local linear regression
produces a smoother function over the domain of printer color management look-up-tables.
We note that, with OSR, any local learning problem can be formulated as a MTL problem.
The paper ends with conclusions and open questions.

2. Output Space Regularization

In multi-task learning, we are interested in learning T functions ft(xti;βt), where βt is a set
of parameters for the tth task, and xti is the ith input from task t. Suppose one is given
Nt training input-output pairs {(xti, yti)}Nt

i=1 for the tth task for t = 1, . . . , T . Note that x
and y can be any objects, as long as the function outputs are comparable with y. Let L
be a loss function, J be a regularization function, and γ be a scalar regularization factor.
Additive regularization in multi-task learning is predominantly parametric, that is, it can
be formulated as

arg min
{βt}Tt=1

T∑
t=1

Nt∑
i=1

L(yti, ft(xti;βt)) + γJ({βr}Tr=1). (3)
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In this paper we focus on the alternative approach where the regularization is a function
of the output values, such that the objective function can be written

arg min
{βt}Tt=1

T∑
t=1

Nt∑
i=1

L(yti, ft(xti;βt)) + γJ({fr(xrj ;βr)}Nr
j=1), for r ∈ {1, . . . , T}. (4)

OSR is complementary to many parametric multi-task regularization strategies, and can
be used in conjunction with them. Also, OSR is easy to generalize to transductive or semi-
supervised learning by regularizing function outputs for unlabeled training data and/or test
samples. In such cases, let {zrj}Mr

r=1 be a set of samples that includes some combination or
subset of the training samples, test samples (transductive), and unlabeled training samples
(semi-supervised), where Mr is the total number of samples from the rth tasks used in the
regularizer. Then (4) generalizes to

arg min
{βt}Tt=1

T∑
t=1

Nt∑
i=1

L(yti, ft(xti;βt)) + γJ({fr(zrj ;βr)}Mr
j=1), for r ∈ {1, . . . , T}.

All regularization functions J used in this paper require information about the related-
ness of multiple tasks which we specify as a similarity matrix between tasks and sometimes
samples.

3. Related Work in Multi-Task Learning

A related multi-task approach that focuses on function outputs is the work of Bonilla et al.
(2008), where a Gaussian process prior is placed over the latent task functions to constrain
their inner products. This method is limited only to Gaussian process regression.

Next, we review other approaches to tying together tasks in various machine learning
problems.

One of the dominant approaches is the use of an explicit multi-task parameter regular-
izer. Evgeniou and Pontil (2004), for instance, penalized the distance of model parameters
βt to 1

T

∑
r βr, the average of all tasks’ model parameters. Argyriou et al. (2007) studied

regularizers in which the spectral norm of the matrix β (the tth column is βt) is penalized.
Kato et al. (2008) formulated a multi-task SVM by imposing a constraint on the difference
between task parameters.

Also common are Bayesian frameworks in which shared statistical structures of the
parameters are learned or imposed. In the work of Bakker and Heskes (2003) some of the
model parameters are shared amongst tasks, while others are connected through a joint
prior. Xue et al. (2007) drew the βt from a Dirichlet process prior, and Liu et al. (2009)
placed a joint distribution over the tasks’ parameters in a semi-supervised framework.

Another approach is the construction of MT kernels. Micchelli and Pontil (2004) ex-
plored the linear combination of kernels for multi-task learning, and Evgeniou et al. (2005)
showed that the problem of estimating T task functions with certain types of regularization
can be cast as a single-task problem using multi-task kernels. Sheldon (2008) built on this
work by proposing a graphical multi-task learning framework using graph Laplacians.

Other work focuses on tying tasks together by jointly selecting features or learning sub-
spaces. Argyriou et al. (2008) use a (2, 1)-norm on the matrix β to encourage a small-number
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of non-zero rows. Obozinski et al. (2010) build on this work to obtain a computationally
efficient joint subspace selection.

Another major question in multi-task learning is how to estimate the similarity (or task
relatedness) between tasks and/or samples if it is not provided. The standard approach,
taken by many of the above-cited papers, is to estimate the similarity matrix jointly with
the task parameters (Zhang and Yeung, 2010; Argyriou et al., 2007; Bonilla et al., 2008;
Xue et al., 2007). As a more detailed example, Zhang and Yeung (2010) assumed that there
exists a covariance matrix for the task relatedness, and proposed a convex optimization
approach to estimate the task covariance matrix and the task parameters in an alternating
way.

Our work does not focus on the question of similarity matrix estimation, and, for all of
our experiments, the task similarity matrix was either provided by domain experts or spec-
ified from domain knowledge. It is straightforward to modify any of the OSR formulations
in this paper so that the similarity matrix between the tasks and/or samples is learned in
conjunction with the task parameters.

OSR is similar to manifold regularization (Belkin et al., 2006) in that the function
outputs are tied together, instead of the function parameters. One can view manifold
regularization (without the RKHS function regularizer) as a special 1-task case of OSR. For
example, Belkin et al.’s Laplacian-regularized least squares objective for semi-supervised
regression solves

arg min
f∈H

∑N
i=1(yi − f(xi))

2 + λ||f ||2H + γ
∑N+M

i,j=1 AFij(f(xi)− f(xj))
2,

where f is the regression function to be estimated, H is a reproducing kernel Hilbert space
(RKHS), N is the number of labeled training samples, M is the number of unlabeled training
samples, AFij is the similarity (or weight in an adjacency graph) between feature samples
xi and xj , and ||f ||H is the norm of the function f in the RKHS. In OSR, as opposed
to manifold regularization, we are estimating a separate function for each of the T tasks.
Given that OSR allows for T unrelated input spaces and functions, it is an open question
whether the mathematics that describe the manifold in Belkin et al.’s work still hold.

A different approach to using manifold regularization concepts for MTL was recently
proposed by Agarwal et al. (2010) for parametric multi-task learning. They assume that the
task parameters lie on a low-dimensional manifold, and alternate estimating the manifold
with learning the tasks in an iterative way. Their approach is restricted to a RKHS and
assumes a global manifold structure for all tasks, which share a common parametric model.

4. MTA Formulation

In this section, we apply OSR to the problem of estimating multiple means, yielding what we
call multi-task averaging (MTA). At first glance, MTA may strike one as a trivial formulation
of OSR. We have found, however, that it leads to fruitful analysis, and is surprisingly
applicable. One useful application of MTA is the novel multi-task kernel density estimation,
which we propose in Section 6. Also, we found that MTA alleviates the problem of high
variance in similarity discriminant analysis, as we show in Section 7.

With squared-loss, MTA has a closed-form solution, and we are able to state some
analytic results in the next section that, while important in their own right, also provide
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intuition for more complicated problems. We give conditions for which the MTA estimates
will be better than the task sample averages. We explore the key question, “How should the
task similarities be defined?” We show the intuitive result that for the simplest two-task case
the optimal similarity between the two tasks depends on the ratio of the task variance to
the task mean differences. However, we show that for more complicated cases, the optimal
similarity behaves unintuitively. Our main theorem is that the MTA estimates are a convex
combination of the individual tasks’ samples averages. We discuss the Bayesian viewpoint
on MTA in Section 5.6. Key notation is given in Table 1.

4.1 MTA Objective

Consider the T -task problem of estimating the means of T random variables. To obtain the
MTA objective from OSR, we simply replace ft with ŷt in (2) We assume that for the tth
random variable one is given Nt samples {yti}Nt

i=1, where each yti ∈ R is an IID draw from
the task-specific random variable Yt. In addition, we assume the T × T matrix A describes
the relatedness or similarity of any pair of the T tasks, with Att = 0 for all t. The proposed
MTA estimates are

{y∗t }Tt=1 = arg min
{ŷt}Tt=1

T∑
t=1

Nt∑
i=1

(yti − ŷt)2 + γ
T∑
r=1

T∑
s=1

Ars(ŷr − ŷs)2. (5)

The first term minimizes the empirical loss, and the second term jointly regularizes the esti-
mates. The regularization parameter γ trades-off the empirical risk term versus smoothing
the task estimates together. Note that if γ = 0, (5) produces the T sample averages. The
MTA problem can be interpreted as learning a constant function from noisy samples where
the “parameter” β and the function output are the same thing. In other words, for the
MTA case, output space regularization and function space regularization coincide.

A more general formulation of MTA is

{y∗t }Tt=1 = arg min
{ŷt}Tt=1

T∑
t=1

Nt∑
i=1

L(yti, ŷt) + γJ
(
{ŷt}Tt=1

)
,

where L is some loss function and J is a regularization function. If L is chosen to be any
Bregman loss, then setting γ = 0 will produce the T sample averages. For the analysis and
experiments in this paper, we restrict our attention to the squared error formulation given
in (5).

4.2 Closed-form Solution for the Scalar Case

We provide a closed-form solution for (5). Let ỹ ∈ RT and Ã ∈ RT×T have components

ỹt =

∑Nt
i=1 yti

Nt + γ
∑

s 6=t(Ats +Ast)
(6)

Ãtr =
γ(Atr +Art)

Nt + γ
∑

s 6=t(Ats +Ast)
. (7)
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Table 1: Key Notation

yti ith sample from tth task
y∗t Multi-task averaging estimate for tth task

y†t Multi-task regularized sample average for tth task
ȳt Sample average for tth task
ŷt An estimate of the mean of tth task
Y∗ Matrix with columns y∗t

The closed-form solution given below in (8) will hold for any A such that I − Ã is in-
vertible. The following lemma shows that, for invertibility of I − Ã, it is sufficient (though
not necessary) for A to have non-negative entries.

Lemma: Suppose all the entries of matrix A are non-negative and for all tasks we have
at least one sample, that is, Nt ≥ 1 for all t ∈ {1, . . . , T}. Then matrix I − Ã is invert-
ible. In addition, for the T = 2 case, I−Ã is invertible for all A, except when a = −N1N2

2(N1+N2)γ .

Proof: See Appendix A.

If (I − Ã) is invertible, then it can be shown that the MTA objective given in (5) is
convex and has the closed-form solution

y∗ = (I − Ã)−1ỹ, (8)

where I is the T × T identity matrix.
Should one find that I − Ã is not invertible (if e.g. some entries of A are negative),

that problem can be solved by a slight perturbation of the matrix A, or by optimizing (5)
directly.

4.3 Closed-form Solution for the Vector Case

MTA can also be applied to vectors, with a closed-form solution. For this section only, let
yti ∈ Rd and ŷt ∈ Rd be vectors. The MTA objective in (5) generalizes to:

{y∗t }Tt=1 = arg min
{ŷt}Tt=1

T∑
t=1

Nt∑
i=1

(yti − ŷt)T (yti − ŷt) + γ

T∑
r=1

T∑
s=1

Ars(ŷr − ŷs)T (ŷr − ŷs). (9)

Using the fact that ∂
∂b(a− b)

T (a− b) = −2(a− b), we can obtain a closed-form solution for
(9). The definition of ỹt is the same as in (6), except with vectors replacing scalars. The
definition of Ã is unchanged from the scalar case. Let Y∗ ∈ Rd×T be a matrix with y∗t as its
tth column and let Ỹ ∈ Rd×T be a matrix with ỹt as its tth column. Then (9) is solved by

Y∗ = Ỹ(I − Ã)−1,

which generalizes the scalar solution (8) if column vectors are changed to row vectors and
vice-versa.
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5. Analysis of MTA

In this section we present some analysis of MTA. Throughout, µ ∈ RT denotes the T × 1
vector of means for the T tasks, assumed to be finite, and capital Y ’s will be used to denote
random variables. We take as given Nt IID random variables {Yti} for the tth task with
i = 1, . . . , Nt. We compare with the vector of sample averages Ȳ ∈ RT , where

Ȳt =
1

Nt

Nt∑
i=1

Yti.

We do not assume any parametric form for the underlying sample distributions, but note
that for many common parametric assumptions (such as Gaussian or Laplacian), the sample
average is the maximum likelihood estimate.

We first present in-depth analysis of the T = 2 case, starting with a special symmetric
case, and then treating the general T = 2 case. We give conditions when the MTA estimates
are better than the sample averages, provide a formula for the optimal task-similarity matrix
A, and show the optimal A sometimes behaves unintuitively. We also prove for T = 2 that
MTA has a smaller MSE than multi-task regularizing of the sample averages; we hypothesize
that this is true in general.

Then we turn to the general case for T tasks. A surprising result is that, under certain
conditions, the MTA estimates are convex combinations of the T sample averages. Lastly,
we note that MTA is asymptotically unbiased.

5.1 Analysis for Symmetric T = 2 Case

We first analyze the simplest case of T = 2 symmetric tasks, with N samples per task.
Specifically, suppose Y1 is distributed with finite mean µ1 and finite variance σ2, and Y2 is
distributed with finite mean µ2 = µ1 + ∆ and finite variance σ2. Let the task-relatedness
matrix be A = [0 a; a 0]. For a fixed A, the regularization parameter γ in (5) is a useful
degree of freedom to control the power of the regularizer. But for this analysis we treat A
as a variable (that is, we treat a as a variable), and thus the γ is an unnecessary degree
of freedom, so without loss of generality we set γ = 1/2. For this simple choice of A, the
matrix inversion in the closed-form solution (8) can be solved analytically, producing the
following properties.

Regularized Estimate: The MTA estimate is a convex combination of the sample aver-
ages (for a ≥ 0):

Y ∗1 =

(
N + a

N + 2a

)
Ȳ1 +

(
a

N + 2a

)
Ȳ2. (10)

Bias: From (10) it follows that the MTA estimate is biased:

E[Y ∗1 ]− µ1 =

(
a

N + 2a

)
∆. (11)
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Variance: From (10) it follows that the MTA estimate has a smaller variance than the
sample average (for a > 0):

Var[Y ∗1 ] =
σ2

N

(
N2 + 2aN + 2a2

N2 + 4aN + 4a2

)
< Var[Ȳ1]. (12)

Mean-Squared Error: From (11) and (12), the mean-squared error for estimating only
µ1 (or only µ2, because the two tasks are completely symmetric for this case) is

MSE[Y ∗1 ] =

(
σ2

N

)
N2 + 2aN + 2a2

(N + 2a)2
+ ∆2 a2

(N + 2a)2
. (13)

Comparing to MSE[Ȳ1] = σ2/N , one can conclude from (13) that

MSE[Y ∗1 ] < MSE[Ȳ1] if ∆2 < 2σ2

(
1

N
+

1

a

)
(14)

Thus the MTA estimate has lower MSE if the mean-separation ∆ is small compared to
the variance weighted by a factor dependent on the similarity and the number of samples.
Note that as a approaches 0 from above, the RHS of (14) approaches infinity. Thus a small
amount of regularization can be helpful even when the mean difference ∆ is large. We
illustrate this relationship in Fig. 1. Note further that the fact a > 0 was not used in
derivation of (14).

Optimal Task Relatedness Information: The MSE given in (13) is a convex function
of a, thus the first derivative can be used to specify the optimal value for a. This gives in
the surprisingly simple result that the MSE[Y ∗1 ] is minimized by the task-similarity value

a∗ =
σ2

∆2
. (15)

This result is key because it specifies that the task-similarity a ideally should measure the
variance of the task samples relative to the task mean-difference. In fact, a∗ is the inverse
of the squared Mahalanobis distance between µ1 and µ2. Further, the ideal task-similarity
is independent of the number of samples N . Intuitively, in the limit case that the difference
in the task means ∆→ 0, the optimal task-relatedness a∗ →∞, and the weights in (10) on
Ȳ1 and Ȳ2 become 1/2 each. We illustrate the effect of choice of a and the optimal a∗ in
Fig. 2.

5.2 Analysis for General T = 2 Case

Next we generalize the above analysis to the general case for two tasks. Consider the same
set-up as Section 5.1, except let there be N1 samples of Y1 and N2 samples of Y2, and let
the corresponding variances be σ2

1 and σ2
2. For shorthand, let

z = N1N2 + aN1 + aN2.

The MTA estimate is again a convex combination of the sample averages (for a ≥ 0):

Y ∗1 =
N1(N2 + a)

z
Ȳ1 +

N2a

z
Ȳ2,

9
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Figure 1: Plot shows squared error summed for two tasks, averaged over 10,000 runs of the simulation.
For each task there are N IID samples, for N = 2, 10, 20. One task generates samples from a
standard Gaussian. The other task generates samples from a Gaussian with σ2 = 1 and varying
mean value, as marked on the x-axis. The symmetric task-relatedness value was fixed at a = 1
(note this is generally not the optimal value, see Fig. 2). One sees that given only N = 2
samples from each Gaussian, the MTA estimate is better if the Gaussians are closer than 2 units
apart. Given N = 20 samples from each Gaussian, the MTA estimate is better if the Gaussians
are closer than 1.5 units apart. In the extreme case that the two Gaussians have the same mean
(µ1 = µ2 = 0), then with this suboptimal choice of a = 1, MTA provides a 45% win for N = 2
samples, and a 15% win for N = 20 samples.

and the MSE is

MSE[Y ∗1 ] =

(
a2N2

2

z2

)
∆2 +

σ2
1N1(N2 + a)2 + σ2

2N2a
2

z2
. (16)

Once again we compare to MSE[Ȳ1] and get

MSE[Y ∗1 ] < MSE[Ȳ1] if ∆2 <
2σ2

1

a
+

2σ2
1

N2
+
σ2

1

N1
− σ2

2

N2
.

We illustrate the MSE given in (16) in Fig. 3.
The optimal task-relatedness value a depends on whether one’s goal is: (i) to minimize

the MSE only on the first task regardless of error on the second task; or (ii) to minimize
the summed MSE over both tasks. For Case (i), analyzing the first derivative of the MSE
in (16) shows that the MSE for the first task is minimized by

a∗1 =
σ2

1

∆2 − σ2
1+σ2

2
N2

, (17)

with swapped indices to compute a∗2. In this case the MSE is not convex, but an analysis
of the second derivative shows that (17) holds in all cases except if the number of samples
from the second task N2 = (σ2

1 − σ2
2)/∆2.
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Figure 2: Plot shows the expected squared error summed for two tasks as given in (13), where the task
samples were drawn IID from Gaussians N (0, 1) and N (1, 1). The task-relatedness value a
was varied as shown on the x-axis. The minimum expected squared error is marked by a ∗, is
independent of N and matches the optimal task-relatedness value given by (15). Given N = 1
samples from each task, using the optimal task-relatedness a for this set-up rather than a = 0
results in a 1/3 reduction in expected squared error; given N = 10 samples from each task, using
the optimal a results in a 9% reduction in error.
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Figure 3: Plot shows the average over 10,000 simulation runs of the sum of the two squared errors for two
asymmetric tasks. For all the results shown, N1 = 5 samples are drawn from a standard normal,
and N2 = 10 samples are drawn from a second Gaussian whose mean was varied and plotted on
the x-axis, and whose variance was either σ2

2 = .2, 1, 5, corresponding to the three sets of lines
shown. The similarity for each simulation was set to the optimal similarity as given by (18).

For Case (ii), analyzing the first derivative of the sum MSE shows that the sum MSE
is minimized by

a∗ =
N2

2σ
2
1 +N2

1σ
2
2

∆2(N2
1 +N2

2 ) + (σ2
1 − σ2

2)(N1 −N2)
. (18)
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Analysis of the second derivative shows that this minimizer always hold for the cases of
interest (that is, for N1, N2 ≥ 1).

A key consequence of (18) is that the optimal similarity a∗ is higher if there are more
samples from the lower variance task, that is, if N1 > N2, then a smaller σ2

1 leads to a
higher a∗. Fig. 3 shows results with the optimal similarity given by (18). In Fig. 3
task two has more samples, and when its variance is σ2

2 = .2, the advantage of MTA is
proportionally greater than when the task two variance is σ2

2 = 5. The dominant effect
in such cases is that MTA greatly decreases the error for the higher-variance less-sampled
task, sometimes at the cost of a small increase in error of the more-sampled class. Even
lower error can be achieved by using the optimal similarity for each task from (17) rather
than using one similarity optimized for both tasks. We compare these two strategies in Fig.
4, which shows that a moderate gain is possible if one has the knowledge to optimally set
the task-relatedness independently for two tasks.

Surprisingly, while the MTA MSE varies smoothly as a function of any of its parame-
ters, the optimal task-relatedness value a∗ can show large jumps and can be negative. To
illustrate the unintuitiveness of (18), we plot the optimal similarity given in (18) for two
slightly differing parameter sets in Fig. 5.
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Figure 4: Plot shows the average over 10,000 simulation runs of the sum of the squared errors for two
asymmetric tasks where the optimal similarity was set the tasks jointly using (18), or set for
each task separately using (17). Other parameters were set to: N1 = 5 samples are drawn from
a standard normal, and N2 = 10 samples are drawn from a second Gaussian whose mean was
varied and plotted on the x-axis, and whose variance was σ2

2 = .2.

5.3 Estimating the Optimal Task Similarity

Examining the formulas for the optimal task relatedness value a∗ in Section 5, one observes
that the similarity matrix A should reflect the relatedness of the underlying tasks’ statistics
and not necessarily their semantic relatedness. This observation predates MTL by a few
decades; Efron and Morris (1977) noted that shrinking baseball statistics towards imported
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Figure 5: Plot shows the optimal similarity for two tasks as given by (18) as a function of the number
of samples N1 drawn from a standard normal. The other parameters were fixed at N2 = 10,
σ2
2 = 5, and two choices of mean separation are shown, ∆ = .28 and .29.

car prevalence data can decrease estimation error, though few would call these two tasks
semantically similar.

In practice, however, we expect that the given task-similarity matrix A encodes domain
knowledge reflecting semantic similarity and is not (necessarily) statistically optimal. We
illustrate in our experiments that such task relatedness information is often available, and
advantageous to incorporate into the estimation. If no task relatedness information is
provided, it may be necessary to use the above formulas to estimate the optimal task
similarity matrix. If, on the other hand, an expert-generated A is available, it may be of
further benefit to combine it with an estimate of the theoretically optimal A. For example,
based on (15), we hypothesize that it may be effective to estimate σ as the average standard
deviation of each task’s samples, and estimate ∆ as the difference of the sample means.
This data-dependent approach is analogous to empirical Bayesian methods in which prior
parameters are estimated from data (Casella, 1985).

5.4 MTA Estimates Are Convex Combinations of Sample Averages

From (8) and (6) it follows that the MTA estimates are linear combinations of the task-
specific sample averages {ȳt}. However, as the special case of T = 2 above suggests, we
can make an even stronger statement (with the addition of some constraints): the MTA
estimates are convex combinations of the T sample averages. An important consequence
of this theorem is that the MTA estimates preserve convexity constraints; that is, if the
samples from all T tasks are from a convex set C, then the theorem guarantees that the
MTA estimates will also be from the convex set C.
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Theorem: Suppose all the entries in matrix A are non-negative. Then if Nt ≥ 1 for all t,
the MTA estimates are convex combinations of the sample averages.

Proof: The proof is given in Appendix B.

5.5 Asymptotic Analysis

The (q, r) entry of matrix Ã given by (7) goes to 0 as Nt goes to infinity. This means
that the whole matrix Ã converges to 0 in norm and since matrix inversion is a continuous
operation, (I − Ã)−1 → I in norm. Because Ỹt − Ȳt → 0 as Nt → ∞, by the law of large
numbers we can conclude that Y ∗ asymptotically approaches the true mean µ.

5.6 Bayesian Interpretation of MTA

In this section, we consider MTA in a Bayesian framework, and discuss related work in
James-Stein and empirical Bayesian estimation.

The MTA objective given in (5) is a structural risk minimization. Many structural risk
minimization problems can be interpreted as maximum a posteriori (MAP) estimates. For
example, consider the ridge regularized analogue to (5):

arg min
{ŷt}Tt=1

T∑
t=1

Nt∑
i=1

(yti − ŷt)2 + γ
T∑
r=1

ŷ2
r = arg max

{ŷt}Tt=1

p({yti}|ŷ)p(ŷ) (19)

= arg max
{ŷt}Tt=1

p(ŷ|{yti}),

where the likelihood p({yi}|ŷ) is the normal distribution N (ŷ, I) and the prior p(ŷ) is the
normal distribution N (0, I/γ).

The Bayesian interpretation of (5) has the same form as (19), where again the likelihood
p({yi}|ŷ) is the normal distribution N (ŷ, I), but p(ŷ) is now the improper prior

p(ŷ) ∝ e−γ
∑T

r=1

∑T
s=1 Ars(ŷr−ŷs)2

=
T∏
r=1

T∏
s=1

e−γArs(ŷr−ŷs)2 . (20)

The improper prior (20) is a product of Gaussian priors on the differences. Note that in
general this does not imply that the differences are independent. Consider for example the
case of T = 3 tasks. Then, assuming the differences are independent, (20) becomes

Ŷ1 − Ŷ2 ∼ N (0, 1/2γA12) (21)

Ŷ2 − Ŷ3 ∼ N (0, 1/2γA23) (22)

Ŷ1 − Ŷ3 ∼ N (0, 1/2γA13), (23)

and note

Ŷ1 − Ŷ3 = (Ŷ1 − Ŷ2) + (Ŷ2 − Ŷ3). (24)
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Here, since the differences are independent, the variances on the right-hand side of (24)
must add, and (21)-(23) would imply that

1

A13
=

1

A12
+

1

A23
and

1

A12
=

1

A13
+

1

A23
and

1

A23
=

1

A12
+

1

A13
. (25)

The three constraints in (25) cannot be satisfied by any positive A, and for any T > 2 the
analogous set of T (T − 1)/2 constraints will also be impossible to satisfy.

The proposed MTA estimator in (5) differs from the related work in standard Bayesian
and empirical Bayesian multi-task estimators. For example, a standard Bayesian multi-
task estimator would tie the tasks together through a prior on the unknown means to be
estimated, e.g.,

Yti ∼ N (Ŷt, σ
2) (26)

Ŷt ∼ N (z, τ2), (27)

where the prior parameters z and τ and the sample deviation σ2 would be assumed known.
This Gaussian model results in the estimate

ŷt =
σ2

σ2 + τ2
z +

τ2

σ2 + τ2
µ̂t,

such that the tying between the tasks all occurs through the (assumed) known prior pa-
rameters.

Empirical Bayesian estimators use standard Bayesian models as in (26) and (27), but
differ in that all the necessary parameters are estimated from the data rather than assumed
(Casella, 1985). Analogously, we could estimate the matrix A from data; this is discussed
further in Section 5.3.

The James-Stein estimator (Casella, 1985) makes the assumption (26) with a known σ2,
then estimates

ŷ =

(
1− (T − 2)σ2

‖µ̂‖2

)
µ̂.

Thus, the James-Stein estimate is significantly different from the proposed estimator, and
as with many empirical Bayesian multi-task estimates, does not jointly estimate the tasks
for small T = 2.

In summary, the proposed MTA estimator differs from the related work in Bayesian
and Stein estimation in what information is assumed given (or to be estimated), and in the
assumed statistical model.

5.7 Comparison of MTA and Multi-Task Regularized Sample Averages

Consider a variant of MTA in which one first obtains the sample mean ȳt for each task, and
then applies (5) as follows:

{y†t}Tt=1 = arg min
{ŷt}Tt=1

T∑
t=1

(ȳt − ŷt)2 + γ
T∑
r=1

T∑
s=1

Ars(ŷr − ŷs)2. (28)
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We refer to the resulting estimates {y†t} as multi-task regularized sample averages. This
variant is related to domain adaptation methods and transfer learning (Daumé III and
Marcu, 2006), which compute some estimates for some tasks, and then regularize estimates
for new tasks to the previous tasks’ estimates. Using similar analysis as in Section (5.1), it
is straightforward to show that

MSE[Y †] =
σ2(1 + 2a+ 2a2)

N(1 + 2a)2
+ ∆2 a2

(1 + 2a)2
. (29)

To gain some insight into when MTA performs better than multi-task regularized sample
averages, we examine the difference between (29) and (13). After some algebraic manipu-
lations, this difference can be written as:

MSE[Y †]−MSE[Y ∗] =
a(N − 1)

(
a∆2N(4a+N + 1)− 2σ2(aN + a+N)

)
N(1 + 2a)2(N + 2a)2

. (30)

When the difference in (30) is positive, MTA performs better than the multi-task regu-
larized sample averages. This occurs when

∆2

2σ2
>

1 + 1
a + 1

N

N + 4a+ 1
N

,

which is true for large values of N and/or a, and when the Mahalanobis distance between
the two tasks is large.

6. Multi-Task Kernel Density Estimation

In this section we present multi-task kernel density estimation (MT-KDE), as an application
of OSR.

6.1 MT-KDE Objective

Recall that for standard kernel density estimation (KDE) (Silverman, 1986), a set of random
samples xi ∈ Ω, i ∈ {1, . . . , N} are assumed to be drawn IID from an unknown distribution
pX over some set Ω, and the problem is to estimate the density over Ω. Given a kernel
function K : Ω× Ω→ R, the standard KDE estimate for any z ∈ Ω is

p̂(z) =
ȳ(z)∫

z′∈Ω ȳ(z′)
, where

ȳ(z) =
1

N

N∑
i=1

K(xi, z). (31)

Note that ȳ(z) in (31) is the sample average of N kernel functions. When multiple
density estimates are desired over the same Ω, we can replace the kernel function sample
average in (31) with the MTA estimate, which we term MT-KDE. Suppose one is given T
sets of samples {xti ∈ Ω}Nt

i=1 for t ∈ {1, . . . , T} drawn IID from each task, and T kernel
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functions {Kt(xti, xtj)}, and a T×T task similarity matrix A. Then form the MTA estimates
using (5):

{y∗t (z)} = arg min
{ŷt(z)}Tt=1

T∑
t=1

Nt∑
i=1

(Kt(xti, z)− ŷt(z))2 + γ
T∑
r=1

T∑
s=1

Ars (ŷr(z)− ŷs(z))2 .

The normalized MT-KDE density estimate for the tth task is then p∗t (z) = y∗t (z)/
∫

Ω y
∗
t (z
′).

Note that often the normalizer is not needed in practice. If needed, it may be non-trivial
to compute if Ω is not a finite discrete set.

6.2 Density Estimation for Terrorism Risk Assessment

We compare KDE and MT-KDE on a problem of estimating the probability of terrorist
events in Jerusalem using the Naval Research Laboratory’s Adversarial Modeling and Ex-
ploitation Database (NRL AMX-DB). The NRL AMX-DB combined multiple open primary
sources1 to create a rich representation of the geospatial features of urban Jerusalem and
the surrounding region, and accurately geocoded locations of terrorist attacks. Density
estimation models are used to analyze the behavior of such violent agents, and to allocate
security and medical resources. In related work, Brown et al. (2004) also used a Gaussian
kernel density estimate to assess risk from past terrorism events.

We estimate a risk density for 40,000 geographical locations (samples) in a 20km ×
20km area of interest in Jerusalem. Each geographical location is represented by a D = 76-
dimensional feature vector. Each of the 76 features is the distance in kilometers to the
nearest instance of some geographic location of interest, such as the nearest market or bus
stop. Locations of past events are known for three different density estimation problems:
17 suicide bombings, 11 non-suicide bombings (e.g. car bombs), and 34 shootings. All
the events are attributed to one of seven terrorist groups. For each of the three problems
(suicide bombing, non-suicide bombings, and shootings), the density estimates for these
seven groups are expected to be related, and we treat them as T = 7 tasks.

We compared KDE and MT-KDE for this problem as follows. The set Ω consists of the
40,000 grid points over which the density is estimated. The kernel function K was taken to
be a Gaussian kernel on the two 76-dimensional feature vectors corresponding to any two
grid points. Each Gaussian kernel was constrained to have diagonal covariance, where the
variances were chosen automatically using the normal reference density technique (Venables
and Ripley, 2002). For the task-similarity matrix A needed for MTA, we asked terrorism
expert Mohammed M. Hafez of the Naval Postgraduate School to assess the similarity
between the seven groups during the Second Intifada (the time period of the dataset);
these similarities are shown in Table 2. The similarity for the “Unknown” group in each

1. Primary sources included the NRL Israel Suicide Terrorism Database (ISD) cross referenced with nu-
merous open sources (including the Israel Ministry of Foreign Affairs, BBC, CPOST, Daily Telegraph,
Associated Press, Ha’aretz Daily, Jerusalem Post, Israel National News), as well as the University of New
Haven (UNH) Institute for the Study of Violent Groups (ISVG), the University of Maryland (UMD)
Global Terrorism Database (GTD), and the National Counter Terrorism Center (NCTC) Worldwide
Incident Tracking System (WITS). The terrorist event data used took place in Jerusalem during the
Second Intifada, between October 2000 and July 2003. Only events that are believed to have occurred
at their planned location were included, that is, bombs that were detonated early or on accident were
not included.
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Table 2: Hafez’s Similarity Matrix A

AAMB Hamas PIJ PFLP Fatah Force17 Unknown

AAMB 0 .2 .2 .6 .8 .8 .6
Hamas .2 0 .8 .2 .2 .2 .4
PIJ .2 .8 0 .2 .2 .2 .4
PFLP .6 .2 .2 0 .6 .6 .5
Fatah .8 .2 .2 .6 0 1 .6
Force17 .8 .2 .2 .6 1 0 .6
Unknown .6 .4 .4 .5 .6 .6 0

column/row was set to be the average similarity of the known groups in that column/row.
We were interested in investigating the usefulness of the provided expert similarity values,
and thus, noting that the regularization parameter γ acts a as multiplier on the similarities,
we set γ = 1.

After computing the KDE and MT-KDE density estimates using all but one of the
training examples {xti} for each task, we sort the resulting 40,000 estimated probabilities
for each of the seven tasks, and extract the rank of the left-out known event. The median of
the left-out rank is reported in Table 3. Ideally, the rank of the left-out known event would
be very low, indicating that the location of the left-out event is at high-risk. The results
show that the median ranks for MT-KDE are much lower than those for KDE for all three
problems.

Fig. 6 shows a spatial map of the density estimates for KDE and MT-KDE for the
AAMB group, where for this figure all the past events were used as training. The green
x’s mark AAMB events. Two differences are notable. First, the MT-KDE predicts higher
risk of AAMB events where the red x’s are. Second, MT-KDE predicts less risk for many
locations, analysis of the risk estimates for the non-AAMB groups suggests that the lowered
risk corresponds to locations estimated to be low-risk for the other groups.

Table 3: Median Rank of Left-Out Event Out of 40,000
Method Suicide Bombings Shootings

Bombings

KDE 308 6,512 11,160
MT-KDE 88 900 4,752

6.3 MT-KDE For Density Estimation Over Different Domains

We generalize MT-KDE to the problem of producing T density estimates where the tth
density estimate is over a task-specific domain Ωt, with Ut domain elements that we index by
ztu for u = 1, . . . , Ut. Over the T tasks there are a total of U =

∑
t Ut domain elements. As

the T domains share a feature space, we use the task-and-domain-element U ×U similarity
matrix that we implicitly index as Arv;sw to specify the similarity between the vth domain
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KDE for AAMB MT-KDE for AAMB

Figure 6: Spatial maps of the risk density estimated for suicide bombing events by AAMB,
trained on all the past events. The green x’s denote the six AAMB suicide
bombings, the red x’s denote the eleven suicide bombings by the other groups
(specifically, by Hamas and PIJ).

element of the rth task and the wth domain element of the sth task. Then we estimate

arg min
{{ŷt(ztu)}Ut

u=1}Tt=1

T∑
t=1

Ut∑
u=1

Nt∑
i=1

(Kt(xti, ztu)− ŷt(ztu))2

+γ
T∑
r=1

Ur∑
v=1

T∑
s=1

Us∑
w=1

Arv;sw (ŷr(zrv)− ŷs(zsw))2 . (32)

The resulting set of estimates {{y∗t (ztu)}Ut
u=1}Tt=1 are then normalized within each task to

form the T density estimates. That is, for the tth task, the MT-KDE density estimate is,

p̂t(ztu) =
y∗t (ztu)∑Ut
v=1 y

∗
t (ztv)

.

6.4 Density Estimation for Mass Spectrometry Charge Classification

We apply MT-KDE for density estimation over different domains to the problem of guessing
the charge for mass spectrometry samples. The dataset consists of T = 25 runs of the LTQ-
FT Ultra Hybrid Mass Spectrometer using data-dependent acquisition, and we treat each
run as a task. Each of the runs is the result of a single protein sample of one of six species:
C. elegans, S. cerevisiae, mouse, Leishmania, bovine, or human. Each sample is a tandem
mass spectrum, from which was extracted a set of D = 18 features that were shown to be
useful for a related mass spectrometry filtering problem (Feldman, 2009). Each spectrum is
the result of extensive bombardment and fragmentation of a peptide ion. There are 24752
spectra total, and within each task there are spectra of peptides of various charges from +1
to +5, which we consider classes. To compare MT-KDE with KDE, we split the samples
randomly in half into a training set (samples xti in (32)) and a test set (samples ztu in

19



Feldman et al.

(32)). To perform randomized 10-fold cross-validation, the training set was further split
75/25 into training and validation sets. For each of the five charge-classes, we use the MT-
KDE objective to simultaneously estimate the probability density for all the test samples
across the T = 25 tasks. Given the five estimated class-conditional densities for MT-KDE
or KDE, each test sample is classified as the maximum likelihood charge-class.

Further experimental details are as follows. Each task’s data is separately standard
normalized to have zero mean and a standard deviation of one. The similarity function in
this case is both task and sample dependent and can be factorized as Arv;sw = ArsA

F
rv;sw,

where Ars = 1 if the species of run in task r and s are the same, and 0 otherwise, and AFrv;sw

measures the similarity between the feature vectors zrv and zsw with a radial basis function
with fixed bandwidth σ2 = 10. This σ value was chosen such that the mean similarity of the
resulting training similarity matrix is approximately 0.5, so that the resulting similarities
are well scaled and not skewed too far towards zero or one. We consider the following range
of γ: {0, 0.001, 0.01, 0.1, 1, 10} for the purposes of cross-validation; γ = 1 was chosen as
the optimal parameter. Note that γ = 0 is the standard KDE case.

The resulting test classification errors are 41.1% for KDE and 33.3% for MT-KDE. The
difference in these errors is statistically significant according to two one-sided Wilcoxon
non-parametric tests; the tests were performed on the resulting zero-one vector of misclas-
sifications (zero when the maximum likelihood class is correct, and one otherwise).

7. Multi-Task Regularized Similarity Discriminant Analysis

Similarity discriminant analysis (SDA) is a generative classifier that models the class-
conditional probability distribution of the similarities between samples using discrete ex-
ponentials (Cazzanti et al., 2008). Like quadratic discriminant analysis, SDA may produce
biased class models, and it has been shown that applying SDA locally (called local SDA)
to a set of k neighboring (most similar) training samples for each test sample generally
decreases model bias and improves performance (Cazzanti and Gupta, 2007). However,
estimating the required discrete exponential parameters from only k neighbors can have
problematically high variance, and in some cases the maximum likelihood parameter esti-
mate is infinite. Here we show that multi-task averaging can be profitably applied to this
parameter estimation task.

7.1 MT-SDA Formulation

In similarity-based classification, the training data is a N ×N matrix S of pairwise similar-
ities between N training samples, and their corresponding class labels yi ∈ {1, 2, . . . , G} for
i = 1, . . . , N . The similarities are assumed to have a discrete (perhaps after quantization)
domain Ω. The test data is a N×1 vector s of similarities between a test sample and the N
training samples. SDA produces a probability that the test sample belongs to each of the G
classes. In our experiments we use local SDA, but for notational simplicity we restrict our
explanation to the SDA; the only difference is in practice the SDA model is trained anew
for the k nearest-neighbors of each test sample.

The pairwise SDA model (Sadowski et al., 2010) requires estimating G2 discrete ex-
ponential distributions of the probability of seeing a certain similarity value between two
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samples if one sample is from class g and the other sample is from class h. That is, the
gth-hth distribution has the form:

P (sgh) = γghe
λghsgh , (33)

where sgh is a similarity between a sample from class g and a sample from class h.
We focus on the problem of estimating the parameter λgh in (33); given λgh the nor-

malizer γgh will be implied. The maximum likelihood estimate λ̂gh satisfies the empirical
mean constraint (Sadowski et al., 2010)

vgh =
∑
sgh∈Ω

sghγghe
λghsgh , (34)

where vgh =

∑
a:ya=g

∑
b:yb=h S(a,b)

kgkh
is the empirical mean with kg, kh are the number of training

samples in class g and class h, respectively. To find the maximum likelihood estimate λ̂gh,
one can compute the sample average on the left-hand side of (34), and then numerically
solve for the best λ̂gh, γ̂gh pair. A particular problem arises when S(a, b) is at an extreme
value of the similarity domain Ω for all a, b. For example, if the similarities can only be 0
or 1, and all training sample pairs from class g and class h happen to have zero similarity,
then the λ̂gh will be ∞.

We apply MTA to this problem and compute multi-task regularized sample averages to
replace the left-hand side of (34), and then numerically solve (34) to produce the multi-task
SDA (MT-SDA) estimates of the discrete exponential parameters. Here, the multiple tasks
are the G2 class-pairings.

In this application, the multi-task regularization operates across pairs of classes: the
average similarity of samples from class g to samples of class h is regularized toward the
average similarity of the samples from class l to class m. In our experiments, we define
the task-similarity matrix A as a Gaussian kernel on the pairwise class sample averages, as
follows. Let vgh denote the gth-hth sample average given by the left-hand side of (34). The
task similarity between the gth-hth task and the l-mth task is taken to be:

Ag−h;l−m = e−(vgh−vlm)2/σ .

7.2 MT-SDA Experiments

We compare the classification performance of the local pairwise SDA classifier to the above
MT-SDA variant. Other similarity-based classifiers have been proposed Chen et al. (2009),
but we restrict our comparison to local SDA to focus on the value of adding the multi-task
regularization.

We report classification results for six different benchmark similarity datasets (Chen
et al., 2009). Table 4 shows the mean test error rates computed from 20 random train/test
splits of the data, with 20% of the data held out for testing and 80% used for training. For
each split, the training set was further split into 10 disjoint cross-validation partitions to
select the multi-task parameter γ and the Gaussian kernel parameter σ among the possi-
ble values {10−3, 10−2, 0.1, 1, 10}, and the neighborhood size k among the possible values
{2, 4, 8, 16, 32, 64,max(128, N)}). Across five datasets multi-task local SDA outperforms
the standard local SDA and one dataset is a tie. The improved performance is statistically
significant according to a Wilcoxon sign rank test (p = 0.05).
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Table 4: Percent test error averaged over 20 random test/train splits for the benchmark
similarity datasets.

Amazon Sonar Patrol Protein Voting FaceRec
2 classes 2 classes 8 classes 4 classes 2 classes 139 classes

Local SDA 11.32 15.25 11.56 10.00 6.15 4.23
Multi-task Local SDA 8.95 14.50 11.56 9.77 5.52 3.44

8. Multi-Task Local Linear Regression

In this section, we discuss how OSR can be used for multi-task regularization of some
parametric models. We focus on the local linear regression model, where f(x, βt) = xTβt +
βt0 for some local neighborhood of x ∈ Rd, with parameters βt ∈ Rd and βt0 ∈ R. For local
linear regression, we combine the OSR regularizer with a standard Tikhonov regularization
of each βt ∈ Rd to find a matrix of regression coefficients β with tth column βt that solve

arg min
β

T∑
t=1

Nt∑
i=1

(yti − βTt xti − βt0)2

+
γ

2

T∑
r,s=1

Ars(β
T
r zr + βr0 − βTs zs − βs0)2 + λ

T∑
t=1

(βt − βG)T (βt − βG), (35)

where zr is the rth task or test sample, βG ∈ Rd is a fixed vector of linear regression weights
that the local regression coefficients are regularized towards, and γ and λ are regularization
parameters. We set βt0 = mean({yt}), which is the optimal offset for Tikhonov regulariza-
tion. For our experiments, we set βG ∈ Rd to be the global least-squares linear regression
coefficients found by fitting all the training data with one hyperplane (rather than locally
fitting some of the training data). Tikhonov regularization often increases accuracy, but it
does not explicitly enforce smoothness of the outputs across the local neighborhoods. The
OSR regularization may add further error reduction, and should create a smoother function
over the domain because it explicitly forces similar (e.g. “nearby”) test samples to have
close output values.

The OSR-LLR estimate defined by (35) has a closed-form, given in Appendix C.

8.1 OSR-LLR Color Management Experiment

We demonstrate the OSR-LLR on the problem of color management of a printer, which
consists of estimating what RGB color should be input to a printer to best reproduce a
desired CIELab color (Bala, 2003). Because such estimations must be fast, color manage-
ment is internationally standardized by the International Color Consortium to use a look-up
table (LUT) or lattice of points in CIELab space that can be efficiently interpolated for any
particular test CIELab color. The color management estimation problem is to best estimate
the RGB values corresponding to the CIELab LUT. Local Tikhonov regression, as defined
by the first and third terms of (35), has been shown to be a state-of-the-art method for
this estimation problem (Hrustemovic and Gupta, 2008), where the βG are the regression
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coefficients for the least-squares global hyperplane fit. For those experiments and these,
“local” is defined by the enclosing k-NN (Gupta et al., 2008) such that Xt is the matrix of
the Nt enclosing k-NN training points for test point zt.

In this work, we treat the estimation of the RGB value for each gridpoint in the lattice
as a task, and simultaneously regress many of them at a time. For problems such as
color management, minimizing the MT trace-norm, for example, is not expected to be
helpful since the problem is already low-dimensional and the colorspace dimensions are all
meaningful. Most importantly however, focusing on tying together the model parameters
does not explicitly enforce smoothness between the lattice points, which the “manifold
regularization” term in OSR-LLR does explicitly. For this application, smooth rendering
of color gradients in the reproduced images is an important dual goal alongside estimation
accuracy (Morovič et al., 2008).

In our experiments, the training samples were (CIElab,RGB) pairs measured from the
918-sample Gretag Macbeth TC9.18 RGB target for a laser printer (Samsung CLP300) and
an inkjet printer (HP D7260). In each case, the LUT to be estimated is a regular 17×17×17
lattice in CIElab space. For each of the 173 lattice points, the problem is to estimate an
RGB triplet of outputs. As standard, we treat the R, G, and B problems independently,
and we use a standard ICC profile architecture of 1D LUTs for linearization before the
estimated 3D LUT (Bala, 2003).

For OSR-LLR, we regularized all the in-gamut lattice points towards each other, where
the in-gamut points were estimated to be all lattice points within three ∆E76 (that is,
Euclidean distance in CIELab space) of the convex hull of the training samples. For the
Samsung and HP printers there were T = 611 and T = 756 estimated-in-gamut lattice
points. For lattice points that fell outside the estimated gamut, we set γ = 0 in (35) which
is equivalent to only using Tikhonov regression for those points. For the 3D LUTs, to ensure
that distant samples do not overly influence one another, we used a simple adjacency test
such that Ars = 1 whenever two lattice points are directly next to each other (each lattice
point has 6 such neighbors), and 0 otherwise, resulting in a very sparse task-similarity
matrix A. The spacing of the 1D LUTs is much finer, so we use the radial basis function

kernel Ars = e
||zr−zs||22

2 .

For Tikhonov regression, we cross-validated the regularization parameter λ from a range
of {0, 1, 5, 10, 20} and chose it by minimizing the difference between the training points’ RGB
values and their estimated values for each choice of λ. For the Samsung and HP printers,
λ = 10 and λ = 5 were chosen for Tikhonov for each printer. For OSR, we used the λ
chosen for Tikhonov to ensure a direct comparison. To choose γ, we ran the estimated
LUTs on a benchmark test image, and chose the largest γ from the set {0, 0.1, 1, 10, 100}
that preserved the black point (too large a γ will turn black to gray because the output
colors are smoothed towards each other). For the Samsung and HP printers, these values
were γ = 10 and γ = 1, respectively.

For all estimation methods, each dimension of Xt was normalized to have mean 0 and
standard deviation 1, and the associated zt was normalized accordingly. For OSR, the tth
column block of BG was normalized by the standard deviation of Xt.

Because perceptions of smoothness are strongly dictated by uneven jumps in luminance
(Wyszecki and Stiles, 2000), the smoothness is measured by the square root of the average
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`2 norm of the estimated LUT’s RGB differences along the L∗ dimension for adjacent
nodes, compared to the smoothness baseline of even RGB differences (Morovič et al., 2008).
These roughness results are reported in Table 5. The results show that the OSR+Tikhonov
LUTs provided greater than just-noticeable decreased roughness (increased smoothness) as
expected, and the statistically indistinguishable or better accuracy than only using Tikhonov
regularization. Specifically, OSR is statistically significantly more accurate than Tikhonov
for the HP printer according to a Wilcoxon one-sided significance test (with a p-value of
.05), and there is no statistically significant difference between OSR and Tikhonov for the
Samsung printer.

Table 5: Mean roughness and ∆E94 error for HP D7260 and Samsung CLP300 printers.
HP D7260 Samsung CLP300

Roughness Mean Error Roughness Mean Error

Tikhonov Regularization 18 2.12 18.5 4.02
OSR + Tikhonov Regularization 16.2 2.09 16.3 4.05

9. Conclusions and Open Questions

The presented OSR formulation is powerful and can be applied to a broad class of esti-
mation problems. We illustrated these attributes with three applications of OSR. First we
presented a multi-task kernel density estimation. Then, the proposed multi-task similar-
ity discriminant analysis showed the use of OSR for a complicated parameter estimation.
Lastly, we showed how parametric models like local linear regression can benefit from the
smoothing action of OSR.

Because it is the outputs that are regularized together rather than the parameters, OSR
can be used with different models for each of the different tasks. For example, consider the
two-task problem of detecting anomalies from an audio stream and a synchronized video
stream. The input feature spaces for the two tasks are different. It would be nonsensical to
impose any constraint tying the task-specific function parameters together numerically or
insist on a shared low-dimensional feature space. Thus, this two-task problem is difficult to
even formulate in the MTL paradigm that dominates today’s literature, but naturally fits the
OSR paradigm. Despite the input spaces not being identical, one can nevertheless specify
the task-sample similarity matrix A by preferentially tying together cross-task samples that
are closer in time.

A key question that we have only partially answered is, “How should one specify a
task-sample similarity in general? Our T = 2 MTA analysis showed that the task simi-
larity matrix should capture the relative in-task variance to between-task difference. Our
experiments successfully relied on side information and kernel computations to quantify
task-and-sample relatedness. The anomaly detection example above uses the known vari-
able of time as side information for sample relatedness. Another approach is to let the
task-sample similarity matrix be an additional variable to optimize over. A third approach
is to estimate optimal task-sample similarities. In the context of MTA, we touched on the
question of how to estimate the optimal task similarity matrix from data, analogous to an
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empirical Bayesian method, but much theoretical and experimental research remains in that
direction.

We found that a negative two-task similarity may be optimal in terms of minimizing
mean-squared error. The interpretation of a negative similarity remains an open question.
We did not explore the potential of a negative similarity in any of our applications. Further,
some of the other theoretical results do not hold for negative similarity, such as the convexity
result.

We focused on squared error for the loss and regularization functions, because of its
usefulness and tractability. Alternative loss functions remain to be explored. Multi-task
medians, for instance, resulting from an L1 loss may be very useful in practice. Multi-task
learning of vectors and matrices may also benefit from the proposed regularization. We
established some theoretical foundations for MTA, perhaps the simplest OSR formulation.
Our main theoretical result is that the proposed MTA estimates are convex combinations of
sample averages. Our proof directly analyzes the Laplace expansion of the matrix inverse.
An open question is whether there is a simpler proof of this result.
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Appendix A: Proof of Lemma

Let B = I − Ã. The (t, s)th entry of B is

Bts =

{
1 if t = s

−γ(Ats+Ast)
Nt+πt

if t 6= s,

where πt = γ
∑
s 6=t

(Ats +Ast).

Next, we use the Gershgorin Circle Theorem (Horn and Johnson, 1990). Let the sum of the
off-diagonal entries for the tth row be

Rt =
∑
s6=t
|Bts| =

πt
Nt + πt

. (36)

The Gershgorin disk D(Btt, Rt) is the closed disk in C with center Btt and radius Rt. From
(36), Rt < 1 if all the entries of A are non-negative. Then since Btt = 1 for all t, every
Gershgorin disk is contained within the positive half-plane of C. Thus by the Gershgorin
Circle Theorem, the real part of every eigenvalue of matrix B is positive, and therefore the
determinant of B is positive. This completes the proof.
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For the T = 2 case, we have that Ã12 = Ã21 = 2aγ
N+2aγ . The matrix I− Ã is not invertible

if and only if its determinant is zero:

Det(I − Ã) = 1−
(
−2aγ

N1 + 2aγ

)(
−2aγ

N2 + 2aγ

)
= 0

N1N2 + 2(N1 +N2)aγ + 4a2γ2 = 4a2γ2

a =
−N1N2

2(N1 +N2)γ
,

as was to be shown.

Appendix B: Proof of Theorem

By the theorem’s assumptions, the entries of A are non-negative, and thus by the lemma
in Section 4.2, (I − Ã)−1 exists. Recall that a matrix inverse can be written as the product
of the determinant and the transpose of the matrix of the cofactors. Because there is no
set ordering of the tasks, we can simultaneously swap the rth and sth row and column of
I − Ã; this means that, without loss of generality, it is enough to prove the theorem for the
first task estimate:

((I − Ã)−1ỹ)1 =
1

det(I − Ã)

T∑
r=1

Cr1
Nr

Nr + πr
ȳr, (37)

where Crs is the (r, s)th cofactor, and by the theorem’s assumptions Nr ≥ 1 for any r =
1, . . . , T . To show that (37) is a convex combination of the T sample averages, we must
show that the coefficients on the ȳr are non-negative and sum to 1.

That is, we must show that

1

det(I − Ã)

T∑
r=1

Cr1
Nr

Nr + πr
= 1,

or equivalently, that
T∑
r=1

Cr1
Nr

Nr + πr
− det(I − Ã) = 0. (38)

For ease of notation, let Sst = γ(Ast +Ats) and Stt = 0. Since

det(I − Ã) = C11 −
T∑
r=2

S1r

Nr + πr
Cr1,

the condition (38) can be re-stated

π1C11

N1 + π1
−

T∑
r=2

(S1r +Nr)Cr1
Nr + πr

= 0. (39)
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Factor out 1/(N1 + π1) from (39) to produce the equivalent condition

π1C11 −
T∑
r=2

(S1r +Nr)(N1 + π1)Cr1
Nr + πr

= 0. (40)

As a first step to showing (40), let’s look at C11. It is the determinant of the (T−1)×(T−1)
minor

M11 =


1 − S23

N2+π2
− S24
N2+π2

· · · − S2T
N2+π2

− S23
N3+π3

1 − S34
N3+π3

· · · − S3T
N3+π3

. . .

− S2T
NT +πT

− S3T
NT +πT

· · · −S(T−1)T

NT +πT
1


and therefore it is

C11 =
T∏
s=2

1

Ns + πs

∣∣∣∣∣∣∣∣∣
N2 + π2 −S23 −S24 · · · −S2T

−S23 N3 + π3 −S34 · · · −S3T

. . .

−S2T −S3T · · · −S(T−1)T NT + πT

∣∣∣∣∣∣∣∣∣ . (41)

We will call the matrix whose determinant featured in Eq. (41) by D and the corresponding
determinant by C ′11. That is,

D =


N2 + π2 −S23 −S24 · · · −S2T

−S23 N3 + π3 −S34 · · · −S3T

. . .

−S2T −S3T · · · −S(T−1)T NT + πT


and C ′11 = det(D).

Next let’s look at the cofactors Cr1. They are the product of (−1)r+1 and the determi-
nant of the (T − 1)× (T − 1) minor Mr1 which we get by removing the rth row and the 1st
column of matrix I − Ã. If we look at the determinant of Mr1 we see that we can factor
out 1

Nk+πk
from the rows k < r and 1

Nk+1+πk+1
from the rows k ≥ r. As a result we get that

N1 + π1

Nr + πr
Cr1

=

T∏
s=2

1

Ns + πs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N2 + π2 −S23 −S24 · · · · · · −S2T
...

S12 S13 · · · · · · · · · S1T
...

−S2(T−1) · · · · · · −S(T−2)(T−1) NT−1 + πT−1 −ST (T−1)

−S2T · · · · · · −S(T−2)T −S(T−1)T NT + πT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (42)

where the row [S12 S13 · · · S1T ] is in the (r− 1)th row of the determinant. We will call the
determinant in Eq. (42) C ′r1. Notice, that we can construct C ′r1 from C ′11 by replacing the
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(r − 1)th row of C ′11 with the vector [S12 S13 · · · S1T ]. Using the expressions for C ′11 and
C ′r1, we can derive a simpler constraint that is equivalent to Eq. (40):

π1C
′
11 −

T∑
r=2

(S1r +Nr)C
′
r1 = 0,

or equivalently
T∑
s=2

S1sC
′
11 −

T∑
r=2

(S1r +Nr)C
′
r1 = 0. (43)

For each s value we will express the matrix that produces the determinant C ′11 slightly
differently. For any s let C ′11 be written as the determinant of a matrix where we replace
the (s− 1)th row by the sum of all the rows (which does not change the determinant), that
is, let C ′11 be written∣∣∣∣∣∣∣∣∣∣∣∣

N2 + π2 −S23 −S24 · · · −S2T
...

N2 + S12 N3 + S13 N3 + S13 · · · NT + S1T
...

−S2T −S3T · · · −S(T−1)T N2 + π2

∣∣∣∣∣∣∣∣∣∣∣∣
.

As the last step we show below that for each r and each s in {2, . . . , T} the (s−1)th term
of (S1r+Nr)C

′
r1 cancels the (r−1)th term of S1sC

′
11. This gives a one-to-one correspondence

between the terms of the sums in Eq. (43) and as a result the difference in Eq. (43) is 0.

To show that, let r, s ∈ {2, . . . , T} and consider the Laplace expansion of C ′r1 along the

(r−1)th row. The s−1th term in that expansion is (−1)r+s−2(S1r+Nr)S1s det
(
M ′(r−1)(s−1)

)
where M ′(r−1)(s−1) is the minor of D we get by erasing the (r − 1)th row and the (s− 1)th

column of D. Consider also the Laplace expansion of S1sC
′
11 along the (s − 1)th row and

consider the (r − 1)th term of this expansion: (−1)r+s−2S1s(Nr + S1r) det
(
M ′(s−1)(r−1)

)
.

Since D is symmetric M ′(s−1)(r−1) =
(
M ′(r−1)(s−1)

)T
and since the determinant of a matrix

and the determinant of its transpose are the same we have that

(−1)r+s−2(S1r +Nr)S1s det
(
M ′(r−1)(s−1)

)
= (−1)r+s−2S1s(Nr + S1r) det

(
M ′(s−1)(r−1)

)
.

At this point, we have shown that the coefficients involved in Eq. (37) sum to 1. Until
now, we have only needed the fact that Sst = Sts and that I − Ã is invertible. The
theorem’s assumption that A has non-negative entries is sufficient but not necessary for the
invertibility of I − Ã.

In order to complete the proof, we must also show that the coefficients in (37) are non-
negative, and for that we explicitly need the theorem’s assumption that the entries of A are
non-negative.

From the proof of the lemma, we already know that the determinant in (37) is positive,
and by the theorem’s assumptions Nr/(Nr + πr) > 0. Thus, we only need to show that
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all the Cr1 are non-negative for r ∈ {2, . . . , T}. If we look at the Eq. (42) we see that it
is enough to show that C ′r1 is non-negative in order to show that Cr1 is non-negative. To
show that C ′r1 is non-negative we rewrite it as follows. Replace the (r − 1)th column with
the sum of all the columns:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N2 + π2 −S23 · · · N2 + S12 · · · −S2T
...

S12 S13 · · · π1 · · · S1T
...

−S2(T−1) S2(T−1) · · · NT−1 + S1(T−1) · · · −ST (T−1)

−S2T S2T · · · NT + S1T · · · NT + πT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (44)

This replacement does not change the determinant. Let’s call the matrix featured in Eq.
(44) by F . If we apply the Gershgorin Circle Theorem to matrix F , and again denote
the sum of the absolute values of the off-diagonal elements in row t by Rt, we see that
Ftt − Rt = Str ≥ 0 for all t 6= r − 1 and F(r−1)(r−1) − Rr−1 = S1r ≥ 0. Thus the distance
from the center of each of the Gershgorin discs to the origin is at least as large as the radius,
and thus by the Gershgorin Circle Theorem, the real part of each eigenvalue of F must be
non-negative, which implies that the determinant of F (which is C ′r1) is non-negative.

Appendix C: OSR-LLR Solution

We give a closed-form solution to (35). Additional notation is needed. We define the
following:

Xt ∈ RD×Nt the matrix with columns xti, for i = {1, . . . , Nt}

yt ∈ R1×Nt the row vector with entries yti

X ∈ RDT×N a block diagonal matrix with blocks Xt, for t = {1, . . . , T}, with N =
∑T

t=1Nt

Z ∈ RDT×T a block diagonal matrix with single column blocks zt

Y ∈ RT×N a block diagonal matrix with single row blocks yt, for t = {1, . . . , T}

B ∈ RDT×T a block diagonal matrix with single column blocks βt

L = Ad −A the graph Laplacian matrix (Chung, 2004) of A, where Ad is a diagonal matrix with entries
Ad

rr =
∑T

t=1Art

B0 ∈ RT×N a block diagonal matrix with single row blocks containing βt0 repeated Nt times

β0 ∈ RT×T a diagonal matrix, with (t, t)th entry βt0

BG ∈ RdT×T a block diagonal matrix with single column blocks βG

1 a column vector of ones.

The OSR-LLR objective given by (35) can be re-written in this matrix notation:

arg min
B

1T (Y − (BTX +B0))(Y − (BTX +B0))T1 + γ1T (BTZ + β0)L(BTZ + β0)T1

+ λ1T (B −BG)T (B −BG)1.
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The OSR-LLR problem is convex, and thus solved by taking the partial derivative of the
objective with respect to B and setting it equal to zero. To do so, we use the following two
identities (Petersen and Pedersen, 2008):

∂aTBTDBa

∂B
= (DT +D)BaaT and

∂aTBT b

∂B
= baT .

Thus the minimizer matrix B∗ must solve:

0 = −2XY T11T + 2XXTB∗11T + 2XBT
0 11T + 2γZLZTB∗11T + 2γZLβT0 11T

+ 2λB∗11T − 2λBG11T .

Because of the special structure of the terms, the above can be simplified without destroy-
ing information by right-multiplying both sides of the equation by 1

T 1, getting rid of the
rightmost 1T . Note that the remaining B∗1 is actually a dT × 1 column vector of all the
βt, stacked. Let B̂∗ = B∗1, then,

B̂∗ = (XXT + γZLZT + λI)−1(XY T −XBT
0 − γZLβT0 + λBG)1, (45)

where the inverse exists as long as λ > 0 because λI is positive definite, while XXT+γZLZT

is PSD for symmetric A.
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