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Abstract—Seaports play a vital role in the global economy,
as they operate as the connection corridors to all other modes
of transport and as engines of growth for the wider region.
But ports today are faced with numerous unique challenges
and for them to remain competitive, significant investments
are required. In support of greater transparency in policy
making, decisions regarding investment need to be supported
by data-driven intelligence. It is often an overlooked fact that
seaports do not remain static over time; such spatial units often
evolve according to environmental patterns both in size but
also connectivity and operational capacity. As such any valid
decision making regarding port investment and policy making,
essentially needs to take into account port evolution over time
and space. In this work, we leverage the huge amounts of vessel
data that are progressively becoming available through the
Automatic Identification System (AIS) and distributed machine
learning to define a seaport’s extended area of operation.
Specifically, we present our adaptation of the well-known KDE
algorithm to the map-reduce paradigm, and report results on
the port of Shanghai.
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I. INTRODUCTION

Today, more than 80% of world trade is transported
by sea. Over the years, the shipping industry has often
had to adapt to market volatility and economic instability.
According to Alphaliner Research, in 2015, a record 212
new container ships were delivered, increasing the global
fleets total capacity by 8.5 percent. Simultaneously there
was a noticeable trend towards higher capacity ships; a
trend which has accelerated in the past five years. Vessels
have grown drastically in size so as to improve fleet overall
efficiency, allowing fewer sailings to the same amount of
transportation units, while they are becoming safer and
greener so as to adapt to stricter safety and environmental
requirements.

On the flip side, terminal operators and port authorities
have been unable to adapt to the rapidly changing conditions
in their ports; as such terminals have struggled to handle the
growing volumes of containers especially during shipping
peaks and traffic jams have generated long delays across all
modes of transport. For example, in 2013 Los Angeles and
Long Beach, which together handled 41% of US container

traffic in 2013, were full to overflowing during the peak
months of August to December, with sometimes up to 18
vessels having to wait outside the ports. New cranes, taller
bridges, terminals and even reconfiguration of the container
yards are just some of the costly investments required
by ports to receive these huge vessels and service them
efficiently. Although investments are usually funded by the
government or other public bodies, returns on investments
can be made by higher port fees but huge ships are making
fewer port calls, while each call is more expensive.

Similarly to other industries, decisions regarding the re-
design of ports areas, their increase in operational capacity
and infrastructure, need to be based on measurable data
which can be transformed into actionable information.

While in the past sea transport surveillance had suf-
fered from a lack of data, current tracking technology has
transformed the problem into one of an overabundance of
information. The major challenge faced today is developing
the ability to identify patterns emerging within these huge
datasets, fused from a variety of sources and generated
from monitoring a large number of vessels on a day-to-
day basis. The extraction of implicit and often unknown
information from these datasets belongs to the field of
data mining and data science. Huge amounts of structured
and unstructured data, tracking vessels during their voyages
across the seas, are becoming available, mostly due to the
Automatic Identification System (AIS) that specific cate-
gories of ships are required to carry, that is a collaborative,
self-reporting system that allows vessels to broadcast their
identity, position, and other information to nearby vessels
and on-ground base stations.

Benchmarking ports will support greater transparency in
policy making, stakeholder decision making, public funding
while promoting healthy competition between the ports
themselves. Benchmarking measurements include maritime
connectivity indicators, current port operational capacity,
number of port calls, type of vessels, call size, cargo
throughput, intermodal connectivity, vessel time at anchor-
age outside port, number of vessel waiting to be processed,
while taking of course into consideration the specific char-
acteristics of regions and other port externalities. Generating



Figure 1. Density of AIS messages collected by MarineTraffic during
March 2015. Each pixel covers a 6-by-6 nmi (one-tenth-degree) square on
the ground and its color is (logarithmically) proportional to the number of
AIS messages whose reported positions fall within its footprint.

such valid and reliable measurements though regarding ports
statistics is a highly complex task. We often overlook the
fact that maritime networks operate as small worlds, where
content and size varies over space and time, under the
influence of the trade and carrier patterns. Such spatial units
are often not well defined and delimited, such as port region,
port system, port range as they evolve according to patterns
[1]. The stepping stone for any useful analytics and valid
data driven approach to port planning is accurately defining
a seaport’s location and operational boundaries, so capacity
and efficiency can be calculated.

II. BACKGROUND AND RELATED WORK

AIS data analysis has proven to be a valid method
for monitoring vessels and extracting valuable information
regarding vessel behaviour, operational patterns and perfor-
mance statistics. As Tichavska, Cabrera, Tovar and Arana,
point out AIS data in research has been used for a variety
of applications including optimization of radio propagation
channel techniques, real-time statistical processing of traffic
information, improving ship traffic management and oper-
ations, sustainable transport solutions and many more [2].
Pallotta, Vespe and Bryan make use of AIS data for vessel
pattern knowledge discovery as a framework for anomaly
detection and route prediction [3]. In [4], Ristic, La Scala,
Morelande and Gordon, use AIS data to extract motion
patterns which are then used to construct the corresponding
motion anomaly detectors.

In relation to seaports research and AIS, in [5] AIS is
leveraged to model maritime terminals operations, specifi-

cally focusing on the port of Messina, Italy, while in [6]
is evaluated the contribution of harbor activities and ship
traffic to PM2.5, particle number concentrations and PAHs
in anoter port city of the Mediterranean Sea (Italy) [6].

Interestingly though, only a small number of these pub-
lications describe applications of MapReduce and Hadoop
approaches to the maritime domain, although there is an
apparent need for parallel computation due to the enormous
amount of implicated data. In their work [7], Wang et al.
attempt to tackle the big data issue caused by the AIS
data for anomaly detection purposes. They implement a
two-step process, where they firstly use an unsupervised
technique, based upon the Density-Based Spatial Clustering
of Applications with Noise considering Speed and Direction
(DBSCAN-SD) incorporating non-spatial attributes, such as
speed and direction, to label normal and abnormal position
points of vessels based on the raw AIS data. Secondly,
they train a supervised learning algorithm designed with
the MapReduce paradigm running on Hadoop using the
labeled data generated in from the first step. HBase, a
distributed scalable column-oriented database part of the
Apache Hadoop ecosystem, is used in [8] to store, process,
and analyze a large amount of spatiotemporal data generated
by shipboard AIS transponders and following this a simple
method of predicting vessel behavior is proposed.

However, to the best of our knowledge, much less work
has been performed in relation to using AIS data to define
the exact seaport location and its operational boundaries. In
this paper we present a methodology to estimate port loca-
tions and operational areas in a scalable and unsupervised
way, based on Kernel Density Estimator (KDE).

III. APPROACH

A. Data description

The AIS was originally conceived as a navigational
safety system to support vessel traffic services in ports and
harbours, but soon after its adoption, especially after the
International Maritime Organization (IMO) mandated AIS
transceivers to be installed onboard a significant number of
commercial vessels, AIS began being used also to achieve
broader Maritime Situational Awareness (MSA), which is
the understanding of the factors that impact the economy,
environment, security, and safety of the maritime domain.

In the remainder of this paper, we apply our approach
to a dataset of more than 57 million AIS messages made
available by MarineTraffic and recorded during the month
of March 2015, in an area of interest that spans more
than 32× 106 square km, approximatively from 90◦ to 150◦

longitude and from 0◦ to 50◦ latitude. In Fig. 1 we report,
for reference, a density map of the dataset over the area
of interest; each pixel in the figure covers a 6-by-6 nmi
(one-tenth-degree) square on the ground and its color is
proportional to the logarithm of the number of recorded AIS
messages whose reported positions fall within its footprint.



Figure 2. The WPI enumerates 483 ports in the area of interest that belong
to 23 different countries. The port locations are shown on the map with
red dots. A Voronoi diagram is also overlaid that depicts how the 1-Nearest
Neighbor (1-NN) splits the data in different partitions.

B. Data preparation

The first hurdle is related to the fact that, in order for
the KDE to be meaningful, only the positions of ships
moored in the port of interest should be taken into account.
Unfortunately, this information is not available a priori, but
has to be determined from the data. The World Port Index
(WPI) [9] is an open database, maintained and updated by
the US National Geospatial-Intelligence Agency (NGA) that
contains the location and physical characteristics of, and
the facilities and services offered by major ports and termi-
nals world-wide (approximately 3700 entries), in a tabular
format. Entries are organized geographically, in accordance
with the diagrams located in the front of the publication.

The WPI enumerates 483 ports in the area of interest that
belong to 23 different countries, as also depicted in Fig. 2,
where red dots indicate the locations of the ports. Using this
information, we use a simple k-Nearest Neighbor (k-NN)
algorithm [10] to determine the closest port —k = 1, or
1-NN— for each position reported by the AIS. The Voronoi
diagram depicted in Fig. 2 is a graphical representation of
this concept, being each region defined as the set of points in
the space that are closer to the seed (i.e. the position of the
corresponding port) of that region than to any other seed. In
other words, the 1-NN enables us to create logical partitions
of the input data set that can be used afterwards to construct
the KDE for each port in the area of interest.

In this work we focus on the port of Shanghai, as this
is the busiest container port in the world and with one of
the most complex operational areas to identify. The port of

Shanghai includes 3 major working zones: the Yangshan
Deep-Water Port (not visible in the figures), the Huangpu
River and the Yangtze River. This port is the main transport
hub for foreign trade in the area. Within the context of
this work, we exploit the fact that vessels slow down when
entering port areas, before coming to a complete stop.
We focus on vessels with speed below 1 kn and on their
positional information (longitude and latitude).

C. Kernel density estimation
Let us assume that xi ∈ Rk, with i = 1, . . . , n, are a

set of observations from a probability density f . Initially
introduced by Rosenblatt [11], a basic KDE of f has the
form [12]:

fn(x) =
1

nhk

n∑
i=1

Kh (x, xi) , (1)

where Kh is the kernel function, and h is the smoothing
parameter. The choice of h has a strong influence on the
estimate, because different values highlight different features
of the data, depending on the density under consideration.
The choice of a kernel function, on the other hand, is not
crucial to the statistical performance, and a widely adopted
choice is the Gaussian kernel, defined as below

Kh(p, q) =
1

(2π)
k
2

√
|Σ|

e−
(p−q)TΣ−1(p−q)

2h2 . (2)

1) Convolution: Apart from a scaling factor, the KDE
formula (1) can also be seen as a convolution (which we
denote with the ∗ operator) between the empirical Probabil-
ity Density Function (PDF) and the kernel function [13]. A
computationally efficient variant of this formulation bins the
data samples into k-dimensional histograms, and convolves
the histogram with the kernels instead of the individual
delta functions. This variant is appealing when the data size
increases, because it produces a similar result at a fraction
of the computational cost.

2) Adaptive KDE: Both the KDE in (1) and the KDE
by convolution employ a fixed kernel bandwidth for all the
observed data points. An intuitive improvement is to weight
observations non uniformly; that is, extreme observations in
the tails of the distribution should have their mass spread in
a broader region than those in the body of the distribution.
Specifically, instead of having a single value for h, in
the adaptive KDE approach hi, for i = 1, . . . , n, is the
bandwidth of the kernel centered in the i-th observation.

The first challenge is how to decide if an observation
belongs to a region of high or low density. The adaptive ap-
proach [13] relies in fact on a two-stage procedure: combin-
ing (1) with (2), a pilot estimate is first computed to identify
low-density regions coarsely, using a fixed bandwidth factor.
Since only a coarse idea of how the density is distributed in
the area of interest, here we can use the convolved histogram,
which comes at a fraction of the computational cost required
to evaluate (1).



3) Local bandwidth factors: Under the assumption that
the underlying distribution is k-variate normal, the optimum

(fixed) window can be written [13] as h∗ =
(

4
n(k+2)

) 1
k+4

.

The local bandwidth factors λi, for i = 1, . . . , n are then

given by λi =
(
fn(xi)
g

)−α
, where 0 ≤ α ≤ 1 is the

sensitivity parameter and g is the geometric mean of the
fixed-bandwidth density estimate fn (xi) evaluated in the
data points, i.e. log g = 1

n

∑n
i=1 log fn (xi). The adaptive

KDE of f can be finally expressed as

f̂n (x) =
1

n

n∑
i=1

1

(h∗λi)
k
Kh∗λi (x,xi) . (3)

IV. IMPLEMENTATION AND RESULTS

Let us indicate the kinematic state of a vessel at a generic
time with xi = [ai, bi]

T ∈ R2, where a and b represent
the longitude and latitude coordinates, respectively, of the
ship in a geographic coordinate system. Finally, we observe
the ship traffic in the neighborhood of a port in the time
interval [0, T ], where T can be hours, days or even months,
depending on the application.

Our objective is to determine the area of the port given
the set of positional AIS observations X = {xi}ni=1 in the
area of interest. Assuming that the samples X are drawn
from a probability density function f , the proposed approach
consists of applying the KDE to the data samples, and
determining the port extent using horizontal cuts of the
resulting estimated probability density function.

Unfortunately, the direct computation of the fixed
KDE (1) is highly inefficient, especially for large or highly
dimensional data sets. In fact several approaches have
been proposed in the past to reduce the computational
burden [14]–[16]. However, as the data set size and its di-
mensionality increase, even the aforementioned approaches
can easily become computationally prohibitive and therefore
distributed approaches are necessary. Zheng et al. [17] have
recently proposed randomized and deterministic distributed
algorithms for efficient KDE with quality guarantees, adapt-
ing them to the popular MapReduce programming model. As
in [17], our approach is to take advantage of the linearity of
the KDE to distribute the computation among many different
nodes using the MapReduce distributed programming model.

In Fig. 3 we report a conceptual representation of the
formulation of the kernel density estimation problem in the
MapReduce framework. The leftmost blocks represent the
partitions of the input data relative to a single port. As
already mentioned in Sect. III-B, this can be achieved using
a 1-NN classifier. Taking advantage of the linearity of the
KDE, each Map function produces an expansion of the given
input partition with the Gaussian kernel. Finally, the Reduce
step is responsible for summing up all the contributes
and eventually produces the final estimate. In the adaptive
version, this schema is expanded with the computation of

the local bandwidth factors, that are then associated to the
corresponding data samples in the partitions.

For our purposes, we consider the port as the extended
location where ships exhibit a very low speed. We form the
KDE in R2 using the positional information xi of the ships
that can be considered stationary. In other words, given the
set of all the observations, we can build a subset of the
positional states of only those ships whose speed is below a
desired threshold vT , and compute the KDE on this subset.

Filtering out all the ships whose velocity exceeds the
threshold of 1 kn leaves us with a dataset of ≈ 19 million
samples, from an initial size of ≈ 57 million. These ≈ 19
million data samples are then fed into the 1-NN classifier
to identify the nearest port to each samples. The result of
this operation is stored in an intermediate data frame that
enables us to select the data samples that should contribute
to the construction of the KDE for the given port of interest.
In the case under study, for the port of Shanghai, ≈ 1.8
million positions have been found to be considered for
computing the density estimate, corresponding to the AIS
messages received by MarineTraffic during March 2015
whose reported velocity was below 1 kn. Finally, we apply
both the fixed and adaptive bandwidth KDE to this data set.

We rely on a Spark cluster made up by: 11worker nodes,
each one equipped with 4 processing cores and 14GB RAM;
and 2 head nodes, each one equipped with 8 processing cores
and 14GB RAM, summing up to a total of 60 computing
cores and 154GB RAM. In our setup, finding the nearest
port to each data sample takes about 7minutes, while the
fixed KDE on the port of Shanghai takes about 6minutes.
The adaptive KDE has as first step a fixed-bandwidth KDE
and is more computationally expensive than the fixed KDE
by definition, taking, with the aforementioned configuration,
about 12minutes to run.

In Fig. 4 we report the comparison between the fixed-
bandwidth (a) and adaptive (b) KDE computed in the area
of the port of Shanghai, the most trafficked port in the
area of interest. The estimate has been determined using
the available data collected by MarineTraffic during March
2015, having selected only those ships whose speed reported
by the AIS was not exceeding the fixed threshold of 1 kn.
The horizontal cuts of the PDF surround the position of the
port, as recorded in the WPI, and most of the probability
mass is in both cases concentrated the area of the Yangtze
River. Another significant part the PDF produced by the
fixed-bandwidth KDE follows continuously the Huangpu
River, and exhibits four distinct peaks around the areas
with the greatest activity. Thanks to the local weighting of
the bandwidth factors, the adaptive KDE is able to better
isolate highly active areas along the Huangpu River, with
less probability mass concentrated in the Yangtze River.

Finally, Fig. 5 demonstrates the effect of the parameter α
on the resulting estimate. It is apparent how smaller values
of α tend to produce similar results as the fixed KDE,



Figure 3. Implementation of the KDE with MapReduce logic. The leftmost block shows the the input data relative to a single port, which is organized in
partitions and stored on a DFS or a distributed database. Taking advantage of its linearity, the computation of the KDE can be distributed among multiple
nodes, each of which performs an expansion of the input partition with the Gaussian kernel.

(a) Fixed-bandwidth KDE (b) Adaptive KDE

Figure 4. Comparison of fixed and adaptive bandwidth kernel density estimates computed in the Shanghai port area. The fixed-bandwidth version (a)
produces a smoother result, but is unable to deal satisfactory with the low-density regions. The adaptive KDE (b) has a higher computational cost than
the fixed KDE, but it produces a spikier, and consequently narrower, estimate on low-density regions. Both the estimates have been computed on the
available data collected by MarineTraffic during March 2015, having selected only those ships whose speed reported by the AIS was not exceeding the
fixed threshold of 1 kn. The red square marker in the map shows the position of the port as recorded in the WPI.

while higher values make the density estimate spikier but
necessarily more fragmented.

V. CONCLUSION AND FUTURE WORK

Estimating port locations and operational areas is an
essential component for achieving MSA. The large volume
of AIS data imposes algorithmic approaches that require
minimal human intervention and scale with the increasing
data volumes. The KDE-based approaches presented here
address these challenges by combining MapReduce with
fixed or adaptive kernel bandwidths. The results presented on

the single port of Shanghai could be extended to other ports
worldwide, and a port analysis platform could be developed
that learns the port areas worldwide in an unsupervised way.
The proposed approach can be extended to other types of
areas besides ports, to automatically estimate their extent in
a data-driven, unsupervised fashion.
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(a) α = 0.3 (b) α = 0.5 (c) α = 0.7

Figure 5. Effect of the sensitivity α on the resulting PDF estimated with the adaptive bandwidth approach. The three panels refer to three different
sensitivity levels, namely α = 0.3 (a), α = 0.5 (b) and α = 0.7 (c). Smaller values of the sensitivity parameter α produce results that are more similar
to the fixed-bandwidth KDE, while spikier density functions are created with higher values of α, but they are inevitable more fragmented.
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