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Abstract—Seaports are spatial units that do not remain static
over time. They are constantly in flux, evolving according
to environmental and connectivity patterns both in size and
operational capacity. As such any valid decision making re-
garding port investment and policy making, essentially needs
to take into account port evolution over time and space;
thus, accurately defining a seaport’s exact location, operational
boundaries, capacity, connectivity indicators, environmental
impact and overall throughput. In this work, we apply a
data driven approach to defining a seaport’s extended area
of operation based on data collected though the Automatic
Identification System (AIS). Specifically, we present our adap-
tation of the well-known KDE algorithm to the MapReduce
paradigm, and report results on the port of Rotterdam.

Keywords-big data, KDE, AIS, port location estimation,
Rotterdam port, Apache Spark, MapReduce

I. INTRODUCTION

The gateway to European commerce and industry is
one of the most complex and dense port networks in the
world. These hubs connect seaborne trade and passengers
to the multimodal transportation networks in Europe, which
include rail, road, air and inland waterways. A recent
report published by the European Commission calculated
that 74% of goods imported and exported and 37% of
exchanges within the Union transit through seaports [1],
[2]. Interestingly though, from the roughly 1200 ports along
the 70 000 km EU coastline, approximately 20% of this
traffic is served by only three ports: Rotterdam, Antwerp
and Hamburg [3]. Today EU ports are facing a number of
unique challenges, which include [1], [2]

• A significant increase in vessels size, speed and vol-
ume; in particular ultra-large container ships, new types
of Roll-on/Roll-off (RORO) ferries and gas-carriers,
are putting pressure onto traditional port structural
infrastructures, while increasing maritime risks, as these
vessels are difficult to maneuver in small shipping
lanes;

• Significant developments in the energy trades, with a
shift from oil and refined products towards gas that
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require significant gasification facilities in ports and
potential volumes of dry biomass and CO2 transport
and storage;

• Adherence to stricter requirements on environmental
performance and alternative fuels.

In the midst of an economic recession, significant invest-
ment is required to keep the EU ports competitive, including
extensions of berths, deepening of basins and canals to en-
able large vessel maneuvering, new terminal and operational
procedures to allow for parallel coordination of services,
implementation of Information and communications tech-
nology (ICT) logistic systems and supply management and
much more. According to the EU commission, the complex-
ity of the administrative procedures for customs clearance
results in big delays at ports, representing just another major
obstacle to the competitiveness of sea shipping and the
efficiency of Union ports [4]. Additionally, port security
has come into the public spotlight, as ports are critically
important infrastructures and potential gateways for unlawful
trades concerning drugs, weapons, counterfeited goods and
even explosive materials.

Recognizing the vital role the ports play in the Union’s
economy, international competitiveness and the single mar-
ket integration, a number of EU wide policies and directives
are being implemented, which aim at guaranteeing the
availability of a well-connected port infrastructure. As such,
the European Transport Infrastructure Plan identifies 329
ports of common interest, including 104 ports of strategic
interest, 9 multimodal core network corridors that start
and end in seaports and reserves a budget of 26 billion
EUR for the period 2014–2020. It is the objective of the
European port policy, while respecting the overarching need
for better infrastructure planning, to stimulate competition
among ports and ensure that adequate capacity is available
for a sustainable growth of European trade and effective
port operations [3]. It is important to note though that al-
though investments are necessary, simultaneously the World
Economic Forum states that, in transport, only 40% of
load capacity is used nowadays. Now more than ever, it
is a necessity to examine the potential of enhancing the
efficiency of the logistic chain by exchanging data, by



exploring and exploiting the benefits of digitalization [5].
Increasing the capacity and redesigning ports, at the cost
of the taxpayer, should be contained at no more than what
is operationally necessary [6]. Similar to other industries,
decisions regarding the redesign of ports areas, their increase
in operational capacity and infrastructure, need to be based
on measurable data which can be transformed into actionable
information.

Data science involves principles, processes, and tech-
niques for understanding phenomena with the ultimate goal
of improving decision making, as this generally is of
paramount interest to business. Data-driven decision-making
(DDDM) refers to the practice of basing decisions on the
analysis of data rather than purely on intuition [7]. While
in the past, sea transport surveillance had suffered from a
lack of data, current tracking technology has transformed the
problem into one of an overabundance of information, lead-
ing to a need for automated analysis. The major challenge
faced today is developing the ability to identify patterns
emerging within these huge datasets, fused from a variety
of sources and generated from monitoring a large number
of vessels on a day-to-day basis. The extraction of implicit
and often unknown information from these datasets belongs
to the field of data mining and data science. Progressively
huge amounts of structured and unstructured data, tracking
vessels during their voyages across the seas are becoming
available, mostly due to the Automatic Identification System
(AIS) that vessels of specific categories are required to carry.
These datasets provide detailed insights into the patterns
that vessels follow, while they can operate as benchmarking
tools for port authorities regarding the effectiveness and
efficiency of their ports. A data-driven approach to seaborne
transportation could potentially,

• Accomplish a decrease in port congestion and seaways
by monitoring and improving the forecasting of vessel
arrivals (ship sizes, cargoes, ETAs, loading/discharge
times) to enable better planning and execution of port
operations (virtual arrivals);

• Achieve a reduction of accidents at sea by timely
detecting hazardous situations (including malicious
events) based on the vessels trajectory, behavior (e.g.
speed, course) and context (e.g. weather conditions or
nearby ships), while proposing measures of proactive
prevention; and

• Contribute to the reduction of green-house gas (GHG)
emission intensity for each vessel by providing data to
increase and optimize operational efficiency.

Benchmarking ports will support greater transparency in
policy making, stakeholder decision making, public funding
while promoting healthy competition between the ports
themselves. Benchmarking measurements include maritime
connectivity indicators, current port operational capacity,
number of port calls, type of vessels, call size, cargo

throughput, intermodal connectivity, vessel time at anchor-
age outside port, number of vessel waiting to be processed,
while taking of course into consideration the specific char-
acteristics of regions and other port externalities. Generating
valid and reliable measurements though regarding ports
statistics is a highly complex task. We often overlook the
fact that maritime networks operate as “small worlds”, where
content and size varies over space and time, under the
influence of the trade and carrier patterns. Such spatial units
are often not well defined and delimited, such as port region,
port system, port range as they evolve according to patterns
[8]. The stepping stone for any useful analytics and data
driven approach to port planning is accurately defining a
seaport’s location and operational boundaries, so capacity
and efficiency can be calculated. This paper discusses work
in progress at the NATO STO Centre for Maritime Research
and Experimentation (CMRE) to estimate port areas in a
scalable, data-driven way. Knowing the extent of port areas
is an important component of larger maritime traffic analysis
systems that employ computational techniques to achieve
Maritime Situational Awareness (MSA). For example, ac-
curately detecting which vessels visit a given port and its
surrounding areas enables the study of vessel traffic Patterns
of Life (PoL’s) in a region, the calculation of summary
statistics on the volume and type of vessels, and the detection
of discrepancies in the vessel-declared origin and destination
ports.

In our approach, we exploit the large volume of historical
and real-time AIS data to estimate the port areas in a
data-driven way, with minimal reliance on other sources
of information. However, as the amount of available AIS
data grows to massive scales, computational techniques for
MSA —which we call computational MSA— must also
contend with acquiring, storing, and processing the data.
We are addressing these challenges by leveraging a cluster
of computers to store the AIS data and to serve the spatial
clustering and density estimation operations underlying the
proposed port area algorithm. The proposed approach can
be extended to other types of areas besides ports: off-
shore platforms, anchorage areas, and fishing grounds can
be detected automatically and their extent estimated using
this approach. This is particularly beneficial because often
these types of areas have dynamic boundaries that change
with the seasons, as a consequence of newly introduced local
vessel traffic schemes, or as new maritime support facilities
become available. Thus, being able to estimate automatically
and quickly the current extent of stationary areas worldwide
becomes essential.

II. BACKGROUND AND RELATED WORK

In recent years extensive research has been performed in
exploring methods of increasing the effectiveness and effi-
ciency of ports through ICT; numerous research efforts have
focused around the themes of ICT as a method of supporting



Figure 1. Density of AIS messages collected by MarineTraffic from
January to March 2015. Each pixel covers a 10-by-10 m square on the
ground and its color is (logarithmically) proportional to the number of AIS
messages whose reported positions fall within its footprint.

more efficient logistics supply chain management, security
management, greener performance and port benchmarking.

At an EU level, a number of collaboration research
projects have been funded related to improving the effi-
ciency and effectiveness of sea operations either through
the FP6, FP7 or Horizon 2020 instruments. As such the
SAIL project, which was funded under FP7, designed and
developed a novel system aimed at improving integrated
logistics management and decision support for intermodal
port and dry port facilities. The two year PPRISM project,
co-funded by the European Commission, delivered a shortlist
of indicators that form the basis of a future European Port
Observatory, which will take the form of a Port Sector
Performance Dashboard. This work was later followed up
by the PORTOPIA (Ports Observatory for Performance
Indicator Analysis) project, funded also under FP7, whose
main objective was to develop an enhanced ports observatory
with a set of indicators measuring EU ports performance,
activities and developments. The SUPPORT project aimed at
providing general methods, technology and training services
to be used by any European Port to upgrade their security
capability. In relation to security, various research projects
have been funded, such as the Maritime Navigation and
Information Services (MarNIS), Motorways & Electronic
Navigation by Intelligence at Sea (MONALISA), Advanced
National Networks for Administrations (ANNA), Vessel
traffic monitoring in EU waters (SafeSeaNet) and MOS.

AIS data has proven to be a valid method for monitoring
vessels and extracting valuable information regarding vessel
behavior, operational patterns and performance statistics. As
Tichavska, Cabrera, Tovar and Arana point out, AIS data in
research has been used for a variety of applications including
optimization of radio propagation channel techniques, real-
time statistical processing of traffic information, improving

ship traffic management and operations, sustainable transport
solutions and many more [9]. Pallotta, Vespe and Bryan
make use of AIS data for vessel pattern knowledge discovery
as a framework for anomaly detection and route prediction
[10]. Huijbrechts, Velikova, Michels and Scheepens present
their work performed in the scope of the METIS project
that makes use of AIS data for automated and consolidated
“situational understanding” [11]. Rashidi and Koto predict
the CO2 emitted by marine transport in Batam-Singapore
Channel using AIS data [12]. In [13], Ristic, La Scala,
Morelande and Gordon, use AIS data to extract motion
patterns which are then used to construct the corresponding
motion anomaly detectors. In relation to sea ports research
and AIS, Ricci, Marinacci and Rizzetto, made use of AIS to
model maritime terminals operations, specifically focusing
on the port of Messina [14]. While Donateo, Gregoris,
Gambaro, Merico, Giua, Nocioni and Contini evaluated the
contribution of harbor activities and ship traffic to PM2.5,
particle number concentrations and PAHs in a port city of
the Mediterranean Sea (Italy) [15]. Jing and Shuang perform
a safety evaluation of China’s maritime transport key nodes
based on AIS [16].

However, to the best of our knowledge, much less work
has been performed in relation to using AIS data to define
the exact seaport location and its operational boundaries, so
capacity and efficiency can be calculated. In this paper we
propose a method to estimate port locations and operational
areas in a scalable and unsupervised way, using the Kernel
Density Estimator (KDE) and taking advantage of one of
the most widely adopted distributed programming models.

In this work, our focus is on the port of Rotterdam.
Located in South Holland, within the Rhine-Meuse-Scheldt
river delta at the North Sea and provides high-frequency
connections to numerous destinations across Europe. The
port’s annual throughput amounts to some 465 million
tonnes, while the port area is more than 40 km, making it the
largest port in Europe and ninth in the world. From the port
of Rotterdam an extensive fleet of inland vessels transports
cargo via the Maas and the Rhine directly to the major
economic centers in the Netherlands, Germany, Belgium,
France, Switzerland and Austria. On a yearly basis more
than 30 000 seagoing vessels and 110 000 inland vessels
visit the port. It is also one of the most complex ports in
the world with numerous terminals including 6 deep sea
container terminals, 3 short-sea terminals and 18 empty
depots; 6 RORO and 19 general cargo terminals, 17 dry
bulk terminals, numerous oil refineries, chemical locations,
gas and power terminals and other.

III. APPROACH

A. Data description

The AIS was originally conceived as a navigational safety
system to support vessel traffic services in ports and har-
bours, but soon after its adoption, and especially after the



Figure 2. Implementation of the KDE with MapReduce logic. The leftmost block shows the the input data relative to a single port, which is organized in
partitions and stored on a DFS or a distributed database. Taking advantage of its linearity, the computation of the KDE can be distributed among multiple
nodes, each of which performs an expansion of the input partition with the Gaussian kernel.

International Maritime Organization (IMO) mandated AIS
transceivers to be installed onboard a significant number
of commercial vessels [17], AIS began being used also to
achieve broader MSA [18], which is the understanding of
the factors that impact the economy, environment, security,
and safety of the maritime domain.

The AIS communication protocol is asynchronous and
prescribes that different types of messages be transmitted
with different frequencies. In fact, the ITU 1371-4 standard
defines 64 different types of AIS messages that can be broad-
cast by AIS transceivers. In this work we focus on the 6 most
relevant ones for MSA, which account for approximately
90% of AIS typical scenarios [19]. Types 1, 2, 3, 18, and
19 are position reports, which include latitude, longitude,
speed-over-ground (SOG), course-over-ground (COG), and
other fields related to ship movement; type 5 messages
contain static-and-voyage information, which includes the
IMO identifier, radio call sign, name, ship dimensions, ship
and cargo types. In all messages, each vessel is identified
by its Marine Mobile Service Identifier (MMSI) number.

Since the first introduction of AIS, maritime traffic and
global compliance with the international requirements have
steadily increased, and the many worldwide networks of
AIS coastal receivers have grown, resulting in larger and
larger volumes of AIS data. Every month, this amounts to
many millions of AIS messages produced by hundreds of
thousands of unique vessels [20].

In the remainder of this paper, we use a dataset about 3.4
million AIS messages made available by MarineTraffic and
recorded from January to March 2015 in an area of about

300 square km over the port of Rotterdam. In Fig. 1 we
report, for reference, a density map of the dataset over the
area of interest; each pixel in the figure covers a 10-by-10
m square on the ground and its color is proportional to the
logarithm of the number of recorded AIS messages whose
reported positions fall within its footprint.

B. Kernel density estimation

Let us assume that xi ∈ Rk, with i = 1, . . . , n, are a
set of observations from a probability density f . Initially
introduced by Rosenblatt [21], a basic KDE of f has the
form [22]:

fn(x) =
1

nhk

n∑
i=1

Kh (x, xi) , (1)

where Kh is the kernel function, and h denotes the ker-
nel bandwidth (or window width), which is a smoothing
parameter. The choice of h has a strong influence on the
estimate, because different values highlight different features
of the data, depending on the density under consideration.
The choice of a kernel function, on the other hand, is not
crucial to the statistical performance, and a widely adopted
choice is the Gaussian kernel, defined as below

Kh(p, q) =
1

(2π)
k
2

√
|Σ|

e−
(p−q)TΣ−1(p−q)

2h2 . (2)

1) Convolution: Apart from a scaling factor, the KDE
formula (1) can also be seen as a convolution (which we
denote with the ∗ operator) between the empirical Proba-
bility Density Function (PDF) and the kernel function [23],



that is

φn ∗Kh =

∫
D

(
1

n

n∑
i=1

δ (ξ − xi)

)
Kh (x− ξ) d

k
ξ

=
1

n

n∑
i=1

Kh (x− xi) = hkfn(x),

(3)

where φn is the empirical PDF, expressed as a sum of n
Dirac delta functions δ (·) centered in the data samples. A
computationally efficient variant of this formulation bins the
data samples into k-dimensional histograms, and convolves
the histogram with the kernels instead of the individual
delta functions. This variant is appealing when the data size
increases, because it produces an essentially identical result
at a fraction of the computational cost.

2) Adaptive KDE: Both the KDE in (1) and the KDE by
convolution (3) employ a fixed kernel bandwidth for all the
observed data points. An intuitive improvement is to weight
observations non uniformly; that is, extreme observations in
the tails of the distribution should have their mass spread in
a broader region than those in the body of the distribution.
Specifically, instead of having a single value for h, in
the adaptive KDE approach hi, for i = 1, . . . , n, is the
bandwidth of the kernel centered in the i-th observation.

The first challenge is how to decide if an observation
belongs to a region of high or low density. The adaptive
approach [23] relies in fact on a two-stage procedure:
combining (1) with (2), a pilot estimate is first computed
to identify low-density regions coarsely, using a fixed band-
width factor. Since only a coarse idea is required of how the
density is distributed in the area of interest, here we can use
the convolved histogram (3), which comes at a fraction of
the computational cost required to compute (1).

3) Local bandwidth factors: Under the assumption that
the underlying distribution is k-variate normal, the optimum
(fixed) window can be written as [23]:

h∗ =

(
4

n(k + 2)

) 1
k+4

. (4)

The local bandwidth factors λi, for i = 1, . . . , n are then
given by

λi =

(
fn (xi)

g

)−α

, (5)

where 0 ≤ α ≤ 1 is the sensitivity parameter and g is
the geometric mean of the fixed-bandwidth density estimate
fn (xi) evaluated in the data points

log g =
1

n

n∑
i=1

log fn (xi) . (6)

The adaptive KDE of f can be finally expressed as

f̂n (x) =
1

n

n∑
i=1

1

(h∗λi)
k
Kh∗λi

(x,xi) . (7)

IV. IMPLEMENTATION AND RESULTS

Let us indicate now the full kinematic state of a vessel at
a generic time with χi = [ai, bi, vi]

T ∈ R3, where a and b
represent the longitude and latitude coordinates, respectively,
of the ship in a geographic coordinate system, and v ≥ 0
is the instantaneous speed of the vessel. We introduce also
a reduced vessel kinematic state that doesn’t include the
instantaneous speed xi = [ai, bi]

T ∈ R2. Finally, we observe
the ship traffic in the neighborhood of a port in the time
interval [0, T ], where T can be hours, days or even months,
depending on the application.

Our objective is to determine the area of the port given
the set of AIS observations X = {χi}ni=1, that can be made
up either by the full or reduced kinematic states of the ships
observed in the area of interest. Assuming that the samples
X are drawn from a probability density function f , the
proposed approach consists of applying the KDE to the data
samples, and determining the port extent using horizontal
cuts of the resulting estimated probability density function.

Unfortunately, the direct computation of the fixed
KDE (1) is highly inefficient, especially for large or highly
dimensional data sets. In fact several approaches have
been proposed in the past to reduce the computational
burden [24]–[26]. However, as the data set size and its di-
mensionality increase, even the aforementioned approaches
can easily become computationally prohibitive and therefore
distributed approaches are necessary. Zheng et al. [27] have
recently proposed randomized and deterministic distributed
algorithms for efficient KDE with quality guarantees, adapt-
ing them to the popular MapReduce [28] programming
model. As in [27], our approach is to take advantage of the
linearity of the KDE to distribute the computation among
many different nodes using the MapReduce distributed pro-
gramming model.

In Fig. 2 we report a conceptual representation of the
formulation of kernel density estimation problem in the
MapReduce framework. The leftmost blocks represent the
partitions of the input data relative to a single port. The prob-
lem of associating each data sample with the corresponding
port is a separate issue, that can be easily addressed using,
for instance, a k-Nearest Neighbor (k-NN) classifier. Taking
advantage of the linearity of the KDE, each Map function
produces an expansion of the given input partition with the
Gaussian kernel. Finally, the Reduce step is responsible for
summing up all the contributes and eventually produces
the final estimate. In the adaptive version, this schema
is expanded with the computation of the local bandwidth
factors, that are then associated to the corresponding data
samples in the partitions.

For our purposes, we consider the port as the extended
location where ships exhibit a very low speed. Consequently,
there are two possible approaches for estimating the density
function. One possibility is to compute the KDE in R3 at a



(a) Fixed-bandwidth KDE (b) Adaptive KDE

Figure 3. Comparison of fixed and adaptive bandwidth kernel density estimates computed in the Rotterdam port area. The fixed-bandwidth version (a)
produces a smoother result, but is unable to deal satisfactory with the low-density regions. The adaptive KDE (b) has a higher computational cost than the
fixed KDE, but it produces a spikier, and consequently narrower, estimate on low-density regions. Both the estimates have been computed on the available
data collected by MarineTraffic from January to March 2015, having selected only those ships whose speed reported by the AIS was not exceeding the
fixed threshold of 1 kn.

(a) α = 0.3 (b) α = 0.5 (c) α = 0.7

Figure 4. Effect of the sensitivity α on the resulting PDF estimated with the adaptive bandwidth approach. The three panels refer to three different
sensitivity levels, namely α = 0.3 (a), α = 0.5 (b) and α = 0.7 (c). Smaller values of the sensitivity parameter α produce results that are more similar
to the fixed-bandwidth KDE, while spikier density functions are created with higher values of α, but they are inevitable more fragmented.

very high computational cost using the complete kinematic
states χi including also the ship speed, and then compute the
spatial density estimate f̄n(x) by marginalization of fn(χ)

f̄n (x) =

∫ vT

0

fn(χ) dv,

where vT is the speed threshold that discriminates the
stationary ships from those under way. Unfortunately, this
approach usually does not improve significantly the quality
of the resulting estimate over less computationally demand-
ing alternatives, especially in low-density regions.

The second possibility is to form the KDE in R2 using
only the positional information xi of the ships that can be
considered stationary. In other words, given the set of all the
observations, we can build a subset of the positional states
of only those ships whose speed is below a desired threshold

vT , and compute the KDE on this subset. This approach can
be also seen as an approximation to the first one that trades
some result accuracy for a more affordable computational
cost.

Filtering out all the ships whose velocity exceeds the
threshold of 1 kn leaves us with a dataset of ≈ 1.5 million
samples, from an initial size of ≈ 3.4 million. These ≈ 1.5
million data samples are then used to compute the density
estimate, corresponding to the AIS messages received by
MarineTraffic from January to March 2015 whose reported
velocity was below 1 kn. Finally, we apply both the fixed
and adaptive bandwidth KDE to this data set.

We rely on a Apache SparkTM cluster made up by:
11worker nodes, each one equipped with 4 processing cores
and 14GB RAM; and 2 head nodes, each one equipped
with 8 processing cores and 14GB RAM, summing up to a



total of 60 computing cores and 154GB RAM. In our setup,
the fixed KDE on the aforementioned area of interest takes
about 3minutes. The adaptive KDE has as first step a fixed-
bandwidth KDE and is more computationally expensive than
the fixed KDE by definition, taking, with the aforementioned
configuration, about 6minutes to run.

Fig. 3 shows a comparison between the port area of
Rotterdam computed with the fixed KDE (a) versus the
one computed with the adaptive KDE (b). The estimates
have been determined using the available data collected by
MarineTraffic from January to March 2015 and the fixed-
bandwidth approach in R2, having selected only those ships
whose speed reported by the AIS was not exceeding the fixed
threshold of 1 kn. The horizontal cuts of the PDF surround
the position of the port, as recorded in the World Port Index
(WPI) [29].

As expected, the PDF exhibits multiple peaks, which are
presumably located in the areas with the highest activity.
However, thanks to the local weighting of the bandwidth
factors, the adaptive KDE is able to better isolate highly
active areas, with less probability mass concentrated in the
entrance of the port.

Finally, Fig. 4 demonstrates the effect of the parameter α
on the resulting estimate. It is apparent how smaller values
of α tend to produce similar results as the fixed KDE,
while higher values make the density estimate spikier but
necessarily more fragmented.

V. CONCLUSION AND FUTURE WORK

Estimating port locations and operational areas is an
essential component for achieving MSA. The large volume
of AIS data imposes algorithmic approaches that require
minimal human intervention and scale with the increasing
data volumes. The KDE-based approaches presented here
address these challenges by combining MapReduce with
fixed or adaptive kernel bandwidths. The results presented on
the single port of Rotterdam could be extended to other ports
worldwide, and a port analysis platform could be developed
that learns the port areas worldwide in an unsupervised way.
The proposed approach can also be extended to other types
of areas besides ports: off-shore platforms, anchorage areas,
and fishing grounds can be detected automatically and their
extent estimated in a data-driven, unsupervised fashion.
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