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ABSTRACT

Analyzing and engineering cellular signaling processes re-
quires accurate estimation of cellular subprocesses such as
protein-folding. We apply parametric and nonparametric
classification to the problem of assessing three-dimensional
protein domain structure predictions generated by the Rosetta
ab initio structure prediction method. The assessment is
based on whether the predicted structure is similar enough
to a known protein structure to be classified as being in the
same protein superfamily. We develop appropriate features
and apply Gaussian mixture models, K-nearest-neighbors,
and the recently developed linear interpolation with maxi-
mum entropy method (LIME). The proposed learning meth-
ods outperform a previous quality assessment method based
on generalized linear models. Results show that the pro-
posed methods reject the vast majority of poor structural
predictions while identifying a useful number of good pre-
dictions.

1. INTRODUCTION

Analyzing and designing cellular signal processing systems
requires the ability to accurately estimate cellular processes
such as the folding of proteins, protein structure, and pro-
tein interactions. Machine learning has been previously ap-
plied to the problem of predicting protein structure from a
given DNA sequence [1]. However, machine learning is the
most effective solution only when practical causative mod-
els are lacking. In the case of protein structural predictions,
molecular biochemical models make it possible to model
and calculate the free-energy of protein structures, and it is
known that what makes natural protein structures stable is in
part their low free-energy. Rosetta [2] is one suchab initio
method that searches for low free-energy possible foldings
of protein domains. Biannually, a blind protein structure
prediction competition is held called the Critical Assess-
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ment of Structure Predictions (CASP). Rosetta has consis-
tently performed at the top in the last three CASP events
[3, 4, 5]. However, it is not enough to find a molecular
configuration that has low free-energy. The Rosetta pro-
cess outputs several thousand low free-energy configuration
for each test genetic sequence, and then these configurations
are examined and analyzed by human experts to select final
predictions.

In this paper we discuss recent efforts to automatically
assess the quality of the low free-energy protein predictions
using statistical learning approaches. A Gaussian mixture
model approach (GMM) is trained and compared to two
nonparametric neighborhood learning methods, K-NN and
the more recent linear interpolation with maximum entropy
(LIME) neighborhood method. In Section 2 we discuss par-
ticularities of the statistical learning problem. The features
used are briefly described in Section 3. The chosen learning
methods are reviewed and motivated in Section 4, The re-
sults presented in Section 5 are a strong improvement over
previously published results, and a step forward in automat-
ing protein-structure prediction.

2. UNDERSTANDING THE STATISTICAL
LEARNING PROBLEM

We assess the quality of each Rosetta low free-energy pro-
tein structure prediction by evaluating its similarity to known
structures in the Protein Data Bank (PDB). Biochemically,
the rationale is that if a prediction is structurally similar
to a known protein then it is more likely to occur natu-
rally, and the prediction is not thrown-out. We compare
each Rosetta prediction to known protein domain structures
in the PDB. We consider four features that describe how
similar a Rosetta prediction is to each of the PDB struc-
tures. Using these features and a training set of known
structures and Rosetta prediction/PDB structure pairs, one
predicts whether the Rosetta prediction and the PDB struc-
ture are structurally similar enough to be considered in the
same superfamily. A superfamily includes protein domains
that share significant structural similarities and an evolu-



tionary link, but do not necessarily have similar genetic se-
quences [6]. The superfamily is determined from the SCOP
(Structural Comparison of Proteins) database, a manually-
curated taxonomy of domain structures. Thus estimating
whether a Rosetta prediction is close enough to a known
protein to be in the same superfamily is used as a proxy
for deciding whether that Rosetta prediction is a reasonable
structure that would occur naturally in cellular processes.

The predictions deemed accurate are kept for further
consideration by human experts, while all other predictions
are discarded. Since there is no ground truth in the SCOP
database for newly predicted structures, we adopt the strat-
egy in previous work [2] and use test sequences from the
PDB with known structure that can be used as ground truth
to determine prediction success. We hypothesize that an ap-
proach that performs well on structural predictions obtained
from known sequences will generalize to predictions for
newly discovered sequences with yet-undetermined struc-
tures.

A parametric and two nonparametric neighborhood learn-
ing approaches were chosen, trained, and compared. The
chosen approaches, a Gaussian mixture model, K-NN, and
LIME, can all be used to form an estimate of the proba-
bility that a Rosetta prediction and a PDB structure are of
the same SCOP superfamily or from different superfami-
lies. Estimating the probability as a precursor to classifica-
tion was a requirement in order to have maximum flexibil-
ity to change the misclassification costs used to make final
classification decisions. Further, the biochemistry experts
preferred to specify the costs in terms of a limit (Neyman-
Pearson criterion) on the percent of false positives. The goal
is to reduce the set of Rosetta predictions, from a huge set of
mostly unrealistic predictions, to a small set of predictions
that are good in the sense that they are structurally similar
to a known protein structure. If in this process a few good
predictions are lost, that is not a large concern. The focus is
on removing from the set the bad predictions. Ideally, one
would like an automatic system that reduced the set to only
predictions that were guaranteed to be good and could thus
be trusted and effectively used in multi-stage cellular mod-
eling and design. Thus the cost structure for the learning
problem is highly asymmetric.

The dataset is also necessarily highly asymmetric. The
dataset was developed by Lars Malmström at the Baker Lab-
oratory of the University of Washington and is not yet pub-
lic [7]. There were 185,944 Rosetta predictions for 1,005
protein domain structures. Of these, 4,462 were good pre-
dictions in the sense that the true protein corresponding to
the genetic sequence that generated the Rosetta prediction
belonged to the same superfamily as the PDB structure to
which it was compared. These predictions are classified
as classgs. The other 181,482 Rosetta predictions in the
training set do not correspond to known PDB structures in

the same superfamily as the true protein corresponding to
the genetic sequence that generated the Rosetta prediction.
These predictions are classified as classgd. Figure 1 shows
an example of a folded protein domain for which Rosetta
produces a very good structural prediction.

Fig. 1. Schematic visualization of the folded protein domain
T116-MutS (Domain 2 - 128-198) in CASP. Note the helical
structures and the sheets (denoted by arrows). The diagrams
represent a true (native) structure and its Rosetta prediction
(Model 4) obtained from its sequence of 68 residues. The
Rosetta prediction agrees very well with the native struc-
ture [8].

3. MEASURING HOW CLOSE A PREDICTED
STRUCTURE IS TO A NATURALLY OCCURRING

STRUCTURE

Based on molecular biology theory and data analysis, four
features were used as indicators of structural similarity be-
tween a Rosetta prediction and a PDB structure. Based on
these features, the statistical learning approaches discussed
in this paper assess the quality of each Rosetta prediction
and produce a likelihood that the Rosetta prediction and the
PDB structure to which it is compared are in the same SCOP
superfamily.

The first feature is the Mammoth z-score. Mammoth is
a sequence-independent structure-to-structure protein com-
parison algorithm which is widely used in protein struc-
ture studies [9]. The three-dimensional models of two pro-
teins are first aligned by matching corresponding atoms in
their three-dimensional carbon backbone traces. The Mam-
moth z-score is then computed based on the the root-mean-
squared deviation (RMSD) of the distances between the cor-
responding elements in the two structures. Higher scores in-
dicate a higher degree of similarity between the two protein
models. Based only on the Mammoth z-score, there is still
a large overlap between the pairs of proteins that are in the
same SCOP superfamily and those that are not, indicating



the need for additional features to discriminate.

Much of the structure of a protein can be described as
α-helices orβ-sheets, and these descriptions are useful indi-
cators of protein family membership [10]. A simple method
for quantifying the contributions of theα-helices andβ-
sheets considers the percentage of number of amino acid
residues in helices and sheets with respect to the total num-
ber of residues in the protein domain. Let (αp, βp) and (αm,
βm) be the percentages ofα-helices andβ-sheets in the
Rosetta prediction and its PDB match, respectively. Then,
αp − αm andβp − βm are two of the four features used.

A notion of length of a protein is the number of residues
that it contains (a residue is an amino acid sidechain plus
the peptide backbone). Our data shows that predictions and
matches with approximately the same residue lengths are
more likely to be in the same SCOP superfamily than pre-
dictions and matches for which the lengths significantly dif-
fer. As a feature, we use the ratio of the length of the Rosetta
prediction to the length of its PDB match.

4. REVIEW OF STATISTICAL LEARNING
METHODS APPLIED

The requirements for a learning method for this application
are that it produce probability estimates that could be used
with flexible misclassification costs to determine a classifi-
cation, that the learning method be robust to highly asym-
metric costs, and that the learning method be robust to highly
asymmetrically distributed classes of data. We chose to
compare a robust parametric approach, GMMs, to a recent
nonparametric neighborhood approach, LIME, and the long-
standing simple K-NN. Due to the highly asymmetric class
distribution, the need for flexible costs, and the known strong
overlap of the classes in feature space, these approaches
seemed better suited exploratory algorithms for this appli-
cation than empirical risk minimization techniques such as
neural nets or large-margin classifiers. However, in future
work we hope to compare with a selection of such methods.

4.1. Gaussian mixture models

Gaussian mixture models (GMMs) are a robust but flexi-
ble parametric approach for solving classification problems.
They have been successful in a variety of different statisti-
cal learning applications. GMMs form smooth approxima-
tions of arbitrary distributions by weighted sums of Gaus-
sian functions, and are thus well-suited to model the over-
lapping feature space distribution of the two classes of inter-
est. The approximation of the class-conditional probability
of feature vectorx is the GMM associated withgs or gd, and
is written as a linear combination of the conditional Gaus-

sian components,

P̂ (X = x|Y ) =
K∑

k=1

wkf(x|µk, Σk), (1)

whereMK = {wk, µk, Σk}, k = {1 . . . K} denotes col-
lectively the parameters of the GMM with K components
andMK depends on the class labelY ∈ {gs, gd}. The
component weights satisfy the constraints

∑K
k=1 wk = 1,

wk ≥ 0.
Each componentf(x|µk, Σk) of a mixture is a multi-

variate Gaussian function with mean vectorµk and covari-
ance matrixΣk, in ad-dimensional feature space

f(x|µk, Σk)

=
1

(2π)d/2|Σk|1/2
exp{−1

2
(x− µk)T Σ−1

k (x− µk)}.

For this application there are four features as described in
Section 3, sod = 4.

Using Bayes’ rule, the a posteriori class probabilities
P (Y |X) can be expressed in terms of the estimated joint
probabilities

P̂ (X = x, Y = g) = P̂ (X|Y = g)P (Y = g),

whereP (Y = g) is the a priori probability of randomly
selecting class labelg,and the decision rule to classify a
Rosetta prediction ings or gd takes the form

P̂ (X = x, Y = gs)
P̂ (X = x, Y = gs) + P̂ (X = x, Y = gd)

> t, (2)

where the thresholdt depends on the misclassification costs.
The structure of the covariance matrices and the num-

ber of componentsK in each class are important design
choices. In (1) one may assume a distinct covariance for
each of the Gaussian components, or one covariance ma-
trix shared by all components. Covariance matrices may
be diagonal or full. Like previous investigators [11], we
hypothesize that the number of training samples and fea-
ture dimensions will allow robust but sufficiently flexible
modeling with distinct diagonal covariance matrices for the
Gaussians in each mixture.

The choice of model orderK is critical to successful
classification. There are no general theoretical results to
guide the choice, and one must determine an appropriate
value empirically. In (1), the likelihood of the data given
the model will always increase asK is increased. However,
simply increasing the number of mixtures in each model
does not increase the rate of correct classification, as the
larger and larger models overfit the training data and gen-
eralize poorly to test data. To avoid overfitting, we use the
Bayesian Information Criterion (BIC) [12] to separately se-
lect the order of the models forgs andgd. The BIC is a



penalized likelihood, where the penalty term is proportional
to the number of model parameters. Denote by|MK | the
total number of parameters in the GMM for class Y. Then
the BIC is expressed as

BICK = 2 log P̂ (X|Y )− |MK | log |T |, (3)

where|T | is the number of training data points used to es-
timateMK . For each class-conditional GMM, models are
trained over a range ofK, and the BIC is evaluated to de-
termine a BIC-optimal value ofK.

For a given value ofK, the parameterswk, µk, and
Σk for each of the two Gaussian mixtures are learned from
training data(Xi, Yi) using the maximum likelihood (ML)
method and the well-known expectation-maximization (EM)
algorithm [12]. The EM algorithm iteratively estimates the
model parameters and maximizes a function of the likeli-
hood of the data, based on the parameters estimated at the
previous iteration. To obtain good ML estimates of the
model parameters with the EM algorithm, it is important to
properly initialize the parameters prior to the first iteration.
Like model order selection, there are no generally applica-
ble theoretical results to help us. In this work the final model
is obtained by averagingR randomly-initialized models:

P̂ (X = x|Y ) =
1
R

R∑
r=1

P̂ (X = x|Y ) (4)

This approach is robust and generalizes well to test data. In
this workR = 5.

4.2. Nearest-Neighbor

Nonparametric neighborhood methods are known to per-
form well in practice, are intuitive, and can achieve optimal
error rates asymptotically [12]. Nonparametric neighbor-
hood classifiers weight the training samples in a neighbor-
hood around the test pointx, and then classifyx as the class
with minimum weighted expected cost. Various neighbor-
hood definitions can be used with these methods; in this
work we use the standard definition of theK nearest neigh-
bors, measured by Euclidean distance. For each test pointx,
let the sample pairs be re-indexed by their distance tox, so
that Xk is thekth nearest-neighbor tox. Given a neigh-
borhood, a weighted nearest-neighbor classifier assigns a
weight wk to each neighbor, usually with the constraints∑K

k=1 wk = 1 and wk ≥ 0. From the weights and the
neighborhood sample pairs, it is standard to form a maxi-
mum likelihood estimate of the probability of each class,

P̂ (Y = g|x) =
K∑

k=1

wkI(Yk=g) (5)

for g ∈ {gs, gd} and whereI(·) is an indicator function that
is one when its argument is true and zero otherwise. The

classification decision rule is then simply

P̂ (Y = g|x) > t, (6)

where the thresholdt depends on the costs [12].
The neighborhood sizeK and the weight vectorw are

important parameters to achieve low classification error. As
for the case of model order selection for GMMs, there is no
theoretical rule to help decide the best value ofK, and usu-
ally it is determined by cross-validation [12]. Many weight-
ing kernels have been proposed in the literature [12, 13].
Most kernels are symmetric and decay the weight with dis-
tance from the test point. In this work, we consider two
weighting schemes for weighted nearest-neighbors: K-NN
and LIME [14, 15]. For K-NN, the weights are uniform,
wk = 1/K. For LIME, the weights solve

arg min
w

(
‖

K∑

k=1

wkXk − x‖22 − λH(w)

)
(7)

whereH(w) = −∑
k wk log wk (the Shannon entropy).

The LIME objective (7) trades-off between two goals:
satisfying the linear interpolation equations, and maximiz-
ing the entropy of the weights. If the only goal were to max-
imize the entropy of the weights, the weights would all be
equal, and solving the LIME objective would result in the
K-NN classifier. In general, maximizing the entropy of the
weights forces the weights to be as uniform as possible [16].
The parameterλ controls the trade off between maximizing
the entropy and solving the linear interpolation equations.
For a test pointx, the linear interpolation equations require
that the weights on the neighbors havex as their center of
mass, that is, so

∑
k wkXk = x. These linear interpolation

equations are not always solvable, and thus the LIME objec-
tive is to minimize the squaredl2 error between

∑
k wkXk

andx. Jointly determining the weights in this way is helpful
particularly when the distribution of neighbors is asymmet-
ric. If two neighbors are too similar, they are each less in-
formative, and they each get less weight due to the linear in-
terpolation equations. If a neighbor occupies a region of the
neighborhood that is more sparse, then the linear interpola-
tion equations ensure that this neighbor receives relatively
more weight. We conjecture that maximizing the entropy of
the weights helps keep the estimation variance down, while
solving the linear interpolation equations helps reduce the
estimation bias. The parametersK andλ were determined
using leave-one-out cross-validation.

5. RESULTS

For the GMM approach to prediction assessment, we used
the BIC to determine that the best model forgs contains
K = 10 mixtures, and the best model forgd containsK =
70 mixtures. The performance of the GMMs is computed



using 10-way cross-validation after determining the num-
ber of components in each mixture1. For K-NN and LIME,
we determined the neighborhood sizeK and the parameter
λ with leave-one-out cross-validation, ranging over several
values of the parameters. We variedK from 1 to 50, and
testedλ = {10−6, 10−3, 0.01, 0.05, 0.1, 0.2, . . . 1}. No sin-
gle value ofK performed best for all the costs we consider;
however, we determined that the most useful range forλ is
{0.01 . . . 0.1}.

Figure 2 shows FP and FN error curves for GMM, K-
NN and LIME, as a function of the classification threshold
t. It is straightforward to determine the thresholdt and the
FN error rate based on a given upper limit for the FP error.
From the graphs, one simply finds the smallest valuet̂ that
guarantees that the FP error does not exceed the upper limit.
The intersection of the vertical line att = t̂ with the FN er-
ror curve determines the corresponding FN error rate. Thus,
the FP error limit, the threshold̂t, and the corresponding FN
error rate completely describe the performance of each clas-
sifier.

Table 1 shows the classification errors for the GMM,
K-NN and LIME classifiers. We considered two different
operating conditions of interest to the Rosetta experts, cor-
responding to the Neyman-Pearson FP upper limits of 5%
and 0.5%. The LIME classifier yielded lower FN error rates
than the GMM or K-NN. Due to the large size of the data
set, the small differences in the percentages in the table cor-
respond to a sizable difference in the number of predicted
structures correctly classified.

For the5% rejection rate, the near-neighbor classifiers
are on the edge of the training parameters (K = 50) and
training with larger neighborhoods is needed to verify that
the reported performance is the optimal.

Table 1. Classification error rates for GMM, K-NN, and
LIME.

GMM % FP % FN
5.00 45.41
0.50 81.67

K-NN % FP % FN
K = 50 5.00 45.67
K = 28 0.50 82.16
LIME % FP % FN
K = 50, λ = 0.1 5.00 44.53
K = 40, λ = 0.1 0.50 81.26

The presented results compare favorably with the only
previously published assessment method for Rosetta protein
structure predictions [2]. In the previous assessment, a gen-
eralized linear model (GLM) [12] estimates the probabil-

1We used a subset of the LNKnet software [17], adapted for Matlab by
Dr. Jack McLaughlin, of the Applied Physics Laboratory, University of
Washington.
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Fig. 2. FN (solid) and FP (dashed) error rates as a func-
tion of the thresholdt for top: GMM, middle: K-NN, and
bottom: LIME. For the FP upper limit of 5%, the corre-
sponding FN error rates are indicated. For K-NN,K = 50;
for LIME, K = 50 andλ = 0.01. These results are also
listed in Table 1.

ity that a prediction and its PDB match belong to the same
SCOP superfamily, based on four features: the Mammoth
z-score, the ratio of amino acid sequence lengths, the length
of the prediction, and a measure of whether the Monte Carlo



search at the core of Rosetta has converged to a viable pre-
diction. The FN error for this GLM ranges from 75.35% to
97.24% for the range of operating conditions we consider.
All the methods evaluated here outperformed the GLM.

6. CONCLUSION AND FUTURE WORK

Proven and new statistical learning methods were applied
to the automatic assessment of the quality of computational
protein domain structural predictions obtained with Rosetta.
The presented classifiers performed better than a previously-
published assessment method based on a GLM. The pro-
posed features, GMM and LIME method will be incorpo-
rated into the Rosetta toolbox to help automate protein struc-
ture prediction. Further, the proposed methods are help-
ful in estimating protein function. Further work to improve
the automated learning is planned, including the investiga-
tion of hybrid classification methods, comparisons to em-
pirical risk minimization techniques, and improvements in
the choice of neighborhood used with LIME.
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