A Document-based Data Model for Large Scale Computational Maritime Situational
Awareness

Luca Cazzanti, Leonardo M. Millefiori and Gianfranco Arcieri
NATO STO Centre for Maritime Research and Experimentation (CMRE)
La Spezia, Italy
Email: {luca.cazzanti, leonardo.millefiori, gianfranco.arcieri} @cmre.nato.int

Abstract—Computational Maritime Situational Awareness
(MSA) supports the maritime industry, governments, and
international organizations with machine learning and big data
techniques for analyzing vessel traffic data available through
the Automatic Identification System (AIS). A critical challenge
of scaling computational MSA to big data regimes is integrating
the core learning algorithms with big data storage modes
and data models. To address this challenge, we report results
from our experimentation with MongoDB, a NoSQL document-
based database which we test as a supporting platform for
computational MSA. We experiment with a document model
that avoids database joins when linking position and voyage
AIS vessel information and allows tuning the database index
and document sizes in response to the AIS data rate. We report
results for the AIS data ingested and analyzed daily at the
NATO Centre for Maritime Research and Experimentation
(CMRE).
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I. INTRODUCTION

The Automatic Identification System (AIS) is a collab-
orative, self-reporting system that allows marine vessels
to broadcast their identity, position, and other information
to nearby vessels and on-ground base stations. Vessels
equipped with AIS transceivers periodically broadcast mes-
sages that include the vessel identifying information, char-
acteristics, and destination together with other information
coming from onboard equipment, such as current location,
speed, and heading '. The AIS was originally conceived as a
navigational safety to support vessel traffic services in ports
and harbours, but soon after its adoption, especially after the
International Maritime Organization (IMO) mandated AIS
transceivers to be installed onboard a significant number of
commercial vessels, 2 AIS began being used also to achieve
broader Maritime Situational Awareness (MSA) [1], which
is the understanding of the factors that impact the economy,
environment, security, and safety of the maritime domain.

Machine learning and data mining researchers have been
developing automated maritime traffic analysis techniques

ITU Recommendation 1371-4, “Technical characteristics for an auto-
matic identification system using time-division multiple access in the VHF
maritime mobile band,” ITU, Tech. Rep. Recommendation, 2001.

2International Maritime Organization, “International Convention for the
Safety of Life at Sea (SOLAS).”

based on AIS to support the broader MSA stakeholder
community, which consists of civilian organizations tasked
with safety, search and rescue, and environmental moni-
toring of the maritime domain; national and international
military organizations concerned with defence and security
of maritime infrastructure; port authorities and maritime
traffic management agencies; maritime shipping, logistics
and insurance companies; financial analysts and commodity
traders. The literature on machine learning applications to
MSA — which we call computational MSA — reports
successful case studies of using AIS data to discover and
characterize maritime traffic patterns, predict vessel routes,
and detect anomalies [2]-[5]. Today, computational MSA
has become a necessary component of MSA.

At the same time, maritime traffic and global compliance
with the international AIS requirements have steadily in-
creased, and the worldwide network of AIS base stations has
grown, producing larger and larger volumes of AIS data [6].
The emergent adoption of satellite-based AIS sensors and the
introduction of class B transceivers is expected to accelerate
further the trend of AIS toward big data [7]. For example,
the NATO Centre for Maritime Research and Experimen-
tation (CMRE) continuously receives, stores, and analyses
quasi-real-time streams of the global AIS message traffic
from multiple aggregation services, and additionally makes
available and processes a real-time stream of AIS messages
received by its own local AIS base station. Every month, this
amounts to approximately 800 million AIS messages from
aggregation sources and over 4 million messages from the
local feed, produced by over 100, 000 unique vessels. Fig. 1
shows a density map of the worldwide maritime traffic:
producing this image required processing approximately 700
million AIS messages.

The larger volume and increased variety of AIS data bring
scalability, complexity, generalization, and interpretability
challenges to computational MSA. However, the literature
so far has demonstrated feasibility on small AIS datasets
from geographically circumscribed areas, and the adopted
algorithms may not naturally scale to big data, generalize
to arbitrary locations, or keep pace with the real-time
processing requirements of MSA use cases. In particular,
the interdependency of the learning algorithms with the



Figure 1.

Density map of maritime traffic in April-September 2012, generated from ~ 2 billion AIS messages collected from multiple networks. Each

pixel represents the number of unique vessels that have reported their position within a corresponding 4 nautical mile (one-fifteenth-degree) square cell.

data storage modes and the data models remains largely
unexplored. At the same time, achieving MSA from AIS
broadcasts critically depends on establishing a clear and
timely correspondence between current and historical vessel
locations and features, the vessel identifying information,
and geographical entities like ports or extended economic
zones. Thus, efficient storage and retrieval of AIS data along
the time and location dimensions are key enablers for the
emergent second wave of computational MSA.

In this paper, we address storage and retrieval strate-
gies for AIS data in support of computational MSA us-
ing MongoDB, a widely adopted document-based NoSQL
database that pledges horizontal scalability, accommodation
of a high insertion rate through sharding and advanced
geo-spatial capabilities. First we describe a document-based
data model for AIS data that embeds the vessel static-and-
voyage information within a document containing a vessel’s
AIS position report. Then we discuss how the MongoDB
database index and the document sizes may be flexibly
tuned to the rate of arrival of ASI messages or to the
processing needs of downstream computational MSA tasks.
Finally, we demonstrate two geospatial queries based on the
proposed document data model that represent typical anal-
yses in support of more complex computational MSA. This
paper will interest computational MSA practitioners who are
interested in exploiting big data technologies in particular
NoSQL and document-based data models, and are looking
for some guidance; big data architects and data scientists
who are interested in building software platforms to serve
the burgeoning field of maritime sensor data analytics, in
particular vessel traffic AIS data.

II. BACKGROUND AND RELATED WORK
A. Machine learning for maritime traffic analysis

Existing machine learning approaches to vessel traffic
analysis can be divided in two categories: point-based and
trajectory-based. Point-based approaches treat each AIS po-
sition message as a point on a geographical grid. Within
each cell, statistical models of the relevant AIS message
dimensions — number of messages, number of unique ves-
sels, vessel velocity and direction, etc. — can be estimated
and used to detect anomalies, predict vessel locations, build
maritime traffic density maps, or characterize AIS sensor
performance [4], [8]-[12]. Because the messages in each
grid cell are used independently of the ones from other
cells to estimate the statistical and predictive models, the
underlying binning, counting, and averaging operations, are
simpleer, making point-based approaches good candidates
for the MapReduce paradigm [13] and for distributed stor-
age modes. However the published literature on integrating
point-based approaches with these big data technologies
remains scarce.

Trajectory-based approaches relax the independence as-
sumptions and the need for geographic grids and focus on
estimating trajectories from the spatio-temporal distribution
of each vessel’s AIS message stream. The estimated trajec-
tories can then be clustered according to various measures of
trajectory similarity, or used as prior knowledge for anomaly
detection. Some [14] adopt methods from geometry to esti-
mate the trajectories, but the great majority of the published
literature [2], [5] takes a hybrid approach instead, based on
the spatial clustering algorithm DBSCAN [15]. The vessel



locations, augmented with speed and direction information,
are first clustered, and the resulting small spatial clusters are
connected together to form coherent trajectories of groups
of vessels [2], [3], [5], [7]-

Compared to point-based approaches, forming trajectories
requires more complex mathematical operations, careful
bookkeeping of the semantic objects — e.g. trajectories,
AIS messages, vessel identity, spatial clusters — and tighter
integration with storage models. This makes decomposing
the underlying operations into MapReduce primitives more
challenging [16] and demands careful consideration of how
the trajectory learning algorithms should interact with big
data distributed storage technologies.

B. Big data techniques for AIS and other sensors

Wijaya and Nakamura [17] demonstrate how HBase can
support ship route prediction from AIS data. They predict a
vessel’s future location from the historical locations of its k-
nearest neighbors (k-NNs). The neighbors are vessels of the
same ship type, navigational status, and draught, that have
previously visited the vessel of interest’s current location.
Fast access to the k-NNs is achieved by carefully designing
the database keys, which exploits HBase’s low-latency, ran-
dom access characteristics. The row key is composed from
the ship type, navigational status and draught fields in the
AIS messages and the column key is the geohashed latitude
and longitude. The algorithm runs on a Hadoop cluster of
11 machines.

Van der Veen et al. [18] assess the performance of SQL
and noSQL databases for storing sensor data on physical
servers and on virtual machines. They evaluate PostgreSQL,
Cassandra, and MongoDB for single- and multiple-client use
cases, with and without database indexes. They concluded
that for large datasets Cassandra performed best, and Mon-
goDB performed better for medium datasets. PostgreSQL
was a better choice when the power of a full-featured query
language is needed. That work considered a basic sensor
data model (id, timestamp, value) and single-node database
installations, which do not fully exercise Cassandra and
MongoDB in their ability to horizontally scale for semi-
structured data.

Wang at al. [19] demonstrate how to carry out a maritime
anomaly detection task on a Hadoop cluster with MapRe-
duce. They take a two-stage approach. First, AIS data are
spatially clustered with a variant of DBSCAN, and manually
augmented with contextual information from human experts.
Then, a parallel meta-learning algorithm implemented with
MapReduce detects the anomalies. The detector accuracy
and execution time improve linearly with the number of
nodes in the cluster, which is consistent with Hadoop’s
horizontal scalability characteristic.

Implementations of DBSCAN exist that partly address its
scalability and parallelization limitations [20], [21]. More

recently, He et al. [16] proposed a 4-stage MapReduce im-
plementation of DBSCAN and demonstrated its performance
on non-maritime GPS data.

C. Relational and document-based models for AIS

The ITU 1371-4 standard defines 64 different types of
AIS messages that can be broadcast by AIS transceivers.
In this work we focus on the 6 most relevant ones for
MSA, which account for approximately 90% of AIS typical
scenarios [22]. Types 1, 2, 3, 18, and 19 are position reports,
which include latitude, longitude, speed-over-ground (SOG),
course-over-ground (COG), and other fields related to ship
movement; type 5 messages contain static-and-voyage infor-
mation, which includes the International Maritime Organiza-
tion(IMO) identifier, radio call sign, name, ship dimensions,
ship and cargo types. In all messages, each vessel is iden-
tified by its Marine Mobile Service Identifier (MMSI). The
AIS communication protocol is asynchronous and prescribes
that different types of messages be transmitted with different
frequencies: static information (type 5 messages) every 6
minutes; position information every 2 seconds to 3 minutes,
depending on the speed, location, and navigational status of
the vessel.

In a relational database [6], each AIS message is stored as
a row in a table whose columns are the message information
fields. Standard practice is to store the different types of
AIS messages, which contain different fields and arrive at
different rates, in two separate tables. Typical computational
MSA tasks require linking the vessel information from the
two tables, which can be accomplished with a relational join
operation. Another option could be to store both types of
messages in wider tables, where each row is the union of
the information fields from both position and static message
types. In this way, computational MSA tasks have direct
access to a complete set of attributes about each vessel with-
out requiring a join when the algorithms execute. However,
position and static messages are in effect joined to form
rows in the wider table at the acquisition stage of the AIS
data pipeline. The main advantage of relational databases is
the broad availability of mature technologies and a strong
tradition in the structures query language (SQL).

In a document database, data are stored in documents.
Within a document, information is stored as key-value pairs.
Conceptually, each key is analogous to a column name in
a relational database, and each value is the row element
corresponding to that column. In this way, each document
encapsulates both the schema and the data in one, self-
contained object. A benefit of the document-based data
model is flexibility. First, different types of data streams
can be encapsulated in different types of documents that
need not abide to the same overall schema. Second, the
key-value document structures can be altered dynamically
and independently. Third, documents can be embedded in



other documents to create heterogenous information chains
that capture complex problem-space semantics.

III. A DOCUMENT-BASED DATA MODEL FOR AIS DATA

We adopt a document-based data model to ingest and
store AIS messages, using MongoDB. To address the com-
putational MSA requirement to link the information in the
position messages with the information in the static-and-
voyage messages, we embed both types of information about
each vessel in a single MongoDB document’. The key-
value pairs represent the standard fields of AIS position
messages* e.g. MMSI ("msi"), latitude and longitude
("lat", "lon"), speed-over-ground ("sog"). The static
information is embedded in the key-value pair "sta".
The value is a sub-document of key-value pairs from the
vessel’s last static-and-voyage AIS transmission, e.g. radio
call sign ("csn"), name ("nam"), IMO number ("imo™"),
destination ("dst™").

Embedding the static information as an additional key-
value pair in the vessel’s position report requires managing
the asynchronous communications and the different intervals
in AIS broadcasts at the time of data ingestion: position
messages are much more frequent than static-and-voyage
messages and this difference in frequency must be managed.
For this, we adopted a buffering procedure where incoming
static/voyage messages are held in a buffer that keeps every
vessel’s latest static information, which is overwritten when
a new AIS static/voyage message for that vessel arrives.
When a position report arrives, it is matched to the static
information stored in the buffer using the MMSI as the
match key, and a new document is added to the MongoDB
database containing the latest position report with the em-
bedded matched static information.

There are drawbacks and advantages to embedding the
static information with the position information in one
document. A drawback is that the document size increases.
Furthermore, the same static-and-voyage information is du-
plicated in potentially many different documents, because
multiple copies of the same AIS static message are em-
bedded in many position messages from the same vessel.
Another cost is the increased complexity introduced by the
buffering mechanism in the data ingestion pipeline, which
amounts to perform a database join (albeit of a single
position message with a single static-and-voyage message)
in quasi-real time. These increased storage and complexity
costs must be weighted with the convenience and flexibility
afforded by the embedded document approach. For many
computational MSA tasks, having immediate access to all
the information about a vessel in a single document can
simplify the data management components of the machine

3An example document, expressed in the JavaScript Object Standard
format (JSON), can be accessed at https://g00.g1/2jCG6G.

41t is standard practice to abbreviate the key names to minimize the
document size.

learning algorithms, and thus can help the algorithm devel-
opers focus on the semantics of their chosen problem.

Many computational MSA tasks require aggregating AIS
data over time ranges at different granularity. Daily, weekly,
monthly, and seasonal statistical analyses of maritime traffic
are very common, as are minute-resolution anomaly detec-
tion and route prediction tasks. To address this need, we
consider the MongoDB combined position and static-and-
voyage documents from a vessel as samples in a time series
of documents, where the timestamp is the time of arrival
of the vessel’s position message’. From the document time
series, aggregate vessel statistics over arbitrary periods of
time can be computed by aggregating the documents at the
appropriate time granularity.

Efficiently accessing the documents by time requires a
database index based on the document timestamps. One
indexing strategy creates an index in MongoDB for each
individual document. Another strategy pre-aggregates mul-
tiple documents at a given time granularity and indexes
the aggregated documents. In fact, different collections of
the same documents pre-aggregated at different levels of
granularity may coexist in the same database, which in this
way can serve the needs of a range of computational MSA
tasks.

We have experimented with document pre-aggregation
in our MongoDB setup. Table I shows the document and
database index sizes for the individual- and aggregated-
document strategies, based on 1 day worth of AIS mes-
sages received by the CMRE from 3 different sources
with different characteristics. Sources S1 and S2 are AIS
data aggregators that stream AIS messages from worldwide
locations. S1 downsamples the real-time AIS stream but
provides broader worldwide coverage. S2 provides the raw
AIS stream from a more limited worldwide coverage. S3
comes from CMRE’s local AIS base station, which provides
a real-time raw data stream of AIS traffic in the Gulf of La
Spezia, Italy.

A window of 60 seconds was chosen for the time-
aggregated strategy, which results in a fixed index size of
1,440 documents per day, equivalent to approximately 50
KB. The sizes of the minute-aggregated documents vary
depending on the data source, and reflect the rate at which
AIS messages arrive at the CMRE computing facilities and
the area of coverage of the AIS messages. For the single-
document strategy, the average document size is approxi-
mately 1 KB, but the index size varies depending on the
source. There is an order of magnitude difference in the
document and index sizes for the individual- and aggregated-
document strategies.

There are benefits and costs to each of these strategies.

3 AIS messages contain only partial time information, so it is standard
practice to assign each message a full UTC timestamp when it arrives at
the computing facilities. The propagation time from the transmitter to the
receiving station is typically negligible.



Table T
DOCUMENT AND INDEX SIZES FOR INDIVIDUAL- AND AGGREGATED-DOCUMENT STRATEGIES.

S1 S2 S3
individual aggregated individual aggregated individual aggregated
Count 4703244 1439 2040082 1439 632 360 1439
Average document size 0.89 KiB 3.99 MiB 0.86 KiB 7.94 MiB 0.98 KiB 0.46 MiB
Index size 130.99 MiB 0.05MiB  63.13MiB 0.05MiB  17.63MiB 0.05 MiB

In the single-document strategy, many small documents
are stored, giving access to individual AIS messages at a
finer granularity, but the database index size is necessarily
larger. In the aggregated-document strategy, each document
is larger and gives access to pre-aggregated AIS messages
at a coarser time resolution, and the index is smaller.
Furthermore, the number of pre-aggregated documents is
fixed, because the number of seconds, minutes, hours, days
in a given time range does not depend on the number of
AIS messages received. Document and index size are im-
portant competing parameters to consider when configuring
the database. In particular, if the index grows larger than
the available memory, database performance will degrade.
Furthermore, MongoDB currently has a hard limit of 16
MB for each document.

Notwithstanding the database configuration issues, a more
fundamental question is: When is pre-aggregation useful for
computational MSA? It depends on the particular task. On
one hand, aggregating documents at a fixed time resolution
provides faster access to sets of documents within specified
time ranges, which can lower the complexity of computa-
tional MSA tasks that need to access batches on AIS mes-
sages grouped by time. On the other hand, aggregation does
not provide immediate access to the individual attributes
in the aggregated documents, which must be unpacked and
made available individually to the algorithms. This increases
the complexity of the learning algorithms that need to access
the data. From these considerations, we hypothesize that no
aggregation or finer aggregation levels are better suited for
near-real-time processing, like anomaly detection, where the
full vessel details must be readily and simply available to
the computational MSA processes. Coarser aggregations are
better suited for computational MSA tasks based on batch
processing , such as characterizing the historical patterns
of life with spatial clustering, or generating a vessel traffic
density map. For these tasks, higher latency is acceptable
and indeed helps manage the increased complexity.

IV. GEOSPATIAL ANALYSES

We illustrate how to interact with document-based AIS
data through examples of typical geospatial analyses. We
leverage the geospatial capabilities built in MongoDB and

the embedded-document model that combines position and
static AIS messages, and demonstrate two typical queries
in support of more complex computational MSA. For these
demonstrations, we installed MongoDB on a computer
equipped with a 16-core, 2.4GHz Intel Xeon CPU, 32 GB
RAM and a 480 GB solid state drive. We loaded MongoDB
with 39 days of data spanning 1 May 2015 to 9 June 2015,
totaling approximately 241 million AIS messages. These
data occupied 201 GB of disk space, and the database index,
built using a single. document strategy, occupied 39 GB.

A. Vessel Traffic Characterization in a Non-convex Region

Fig. 2 shows the vessel tracks in the Strait of Gibral-
tar, measured from AIS transmissions over a 5-day period
starting 3 May 2015. The outer, dotted-line bounding box
and the inner solid-line one define a non-convex region of
interest. Within the inner bounding box, the pixels forming
the vessel tracks are color-coded by the speed reported by
the vessels at the pixel coordinates. Note how the speeds
decrease as the tracks approach the Gibraltar choke point,
where more tracks are blue and green (slower speeds). Note
also that some tracks away from the choke point are blue
(slowest speed) and describe self-contained patterns: these
may be fishing vessels or loitering vessels, or assigned
waiting areas or off-shore platforms. An interesting track
is the blue one at (7.2W, 35N): it is a slow vessel in the
open seas, where typical speeds are higher. Fig. 3 shows the
distribution of average vessel speeds within the inner bound-
ing box, broken out by ship class. Note that calculating this
result required matching AIS static information (ship class)
with AIS position information (latitude, longitude, speed-
over-ground), which was easily achieved by the embedded
document model.

The corresponding query® to extract the documents
within the inner polygon leverages MongoDB’s built-in
$Sgeowithin construct to filter the documents by the loca-
tion ($1oc) key-value pair with respect to the user-defined
$Sgeometry polygonal bounding box poly_in. The query
also filters the documents along the time dimension, by
checking that the document timestamp ($tst) key-value
falls within user-defined starting and ending dates.

A sample query is available at https://goo.gl/VFPZ2e.
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Figure 2. The vessel tracks color-coded by the speed-over-ground AIS
attribute, for the Strait of Gibraltar, within a non-convex region of interest.

Average velocity [kn]

Figure 3.

The distribution of average vessel speeds across various types
of vessels in the Strait of Gibraltar.

B. Vessel Rendezvous Detector

A vessel rendezvous occurs when two or more vessels
transit within a certain distance of each other. This could
be the result of normal traffic patterns in a given region,
but it could also be an indication of illicit activity, such
as transferring goods from one vessel to another without
authorization, or transferring illegal cargo. Fig. 4 shows the
result of a rendezvous detector run on 10 days of AIS data.
The green track refers to a vessel of interest; the other tracks
refer to vessels that triggered a rendezvous detection with
the vessel of interest. The red circles indicate the actual
rendezvous locations, where a rendezvous is detected if a
vessel transited within 2 nautical miles but no less than 200
meters of the vessel of interest, and the corresponding AIS
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Figure 4. The rendezvous detections.

position messages were timestamped within 400 seconds of
each other. The corresponding query’ leverages the $Snear
construct in MongoDB to determine geographical distance.

V. SUMMARY AND FUTURE WORK

We have experimented with MongoDB, a document-based
NoSQL database, as a tool to support the data storage and
algorithm development needs of computational MSA. We
proposed a document-based data model for AIS data that
embeds both position and static-and-voyage types of AIS
messages from a vessel in a single document, and described
how these embedded documents could be further aggregated
by time and stored together at different granularities. We
demonstrated two typical queries of AIS data stored in
documents on a test MongoDB environment. The main
benefit of a document-based data model for computational
MSA is flexibility: different types of AIS messages can be
stored together or separately, and messages can be stored
individually or aggregated by time. This flexibility can help
the computational MSA community, which is beginning
to study how maritime traffic analysis learning algorithms
should interact with big data storage technologies in order
to meet the challenges brought by the massive amounts of
AIS data.

This work is preliminary, and it did not aim to comprehen-
sively solve the problem of integrating big data technologies
with core computational MSA learning algorithms. Possible
future work is to evaluate a spectrum of NoSQL tools for
computational MSA, in particular how their assumed data
models may benefit various computational MSA tasks. A
future direction of particular interest is to address how
spatial clustering algorithms may make use of document-
based storage models and of modern geospatial query tools

7A sample query is available at https:/goo.gl/SV6Ra9.



such as the ones we experimented with using MongoDB.
This effort could lead to new algorithms that can potentially
deeply influence the future of computational MSA.
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