
Decision Tree-Based Adaptive Modulation for

Underwater Acoustic Communications

Konstantinos Pelekanakis, Luca Cazzanti, Giovanni Zappa and João Alves

NATO STO Centre for Maritime Research and Experimentation (CMRE)

Viale San Bartolomeo 400, La Spezia 19126, Italy

e-mail: {konstantinos.pelekanakis, luca.cazzanti, giovanni.zappa, joao.alves}@cmre.nato.int

Abstract—Underwater acoustic channels are characterised by
non-stationary fading statistics and consequently, a modulation
scheme optimally designed for a specific fading model will
underperform when the channel statistics change. This issue can
be alleviated by using adaptive modulation, i.e., the matching
of the modulation scheme to the conditions of the acoustic link.
However, selecting signals from a broad range of bit rates is
tedious because one needs to know the relationship between the
bit error rate (BER) and all relevant channel characteristics (e.g.,
multipath spread, Doppler spread and signal-to-noise ratio). In
this work, this BER-channel relationship is extracted from large
amounts of transmissions of a phase-shift keying (PSK) modem.
In particular, a decision tree is trained to associate channels with
modulation schemes under a target BER. The effectiveness of the
proposed tree method is demonstrated by post-processing data
from two experimental links off the coast of Faial Island, Azores,
Portugal.

I. INTRODUCTION

Communication channels are typically categorized as

power-limited or bandwidth-limited. This distinction is im-

portant because different modulation techniques are suitable

for each channel. Power-limited channels yield a bit rate-to-

bandwidth ratio less than one and require incoherent signaling,

such as frequency-shift keying (FSK), to achieve reliable trans-

mission. In contrast, bandwidth-limited channels can support

several bits of information per Hz of occupied bandwidth thus

achieving higher bit rates. Coherent modulation methods are

Phase-shift keying (PSK) and Quadrature amplitude modula-

tion (QAM). Adapting the modulation between coherent and

incoherent methods is straightforward if the transmitter has

knowledge of the received signal-to-noise ratio (SNR) [1].

Most commercial and military underwater acoustic commu-

nications channels fall into the bandwidth-limited regime. In

this case, not only the SNR but also the channel multipath

spread and Doppler spread dictate modem performance [2].

Since the physical properties determining sound propagation

underwater are complex, it is almost impossible to find general

probabilistic models for channel multipath/Doppler spread [3].

Hence, a system designed for fixed-rate PSK/QAM modulation

will underperform over an extended period of time. One

solution to this problem is to adapt the bit rate based on

channel conditions provided that the channel fluctuates slowly

during the two-way signal travel time.

Studies that propose adaptive modulation in underwater

acoustic channels are scarce. The authors in [4],[5] focus

on single-carrier PSK modems while the authors in [6],[7]

focus on orthogonal frequency division multiplexing (OFDM)

modems. The central point in these papers is to identify

the relationship between channel characteristics and system

design.

This short paper presents the first attempt to use data

mining for extracting the relationship between the BER and

the acoustic channel characteristics. In particular, we use a

decision tree (or regression tree) to learn the BER of a single-

carrier PSK modem based on large amounts of transmissions

at various bit rates. The effectiveness of the proposed tree

method is demonstrated by analysing data from two links in

a recent at-sea experiment.

II. DECISION-TREE AIDED ADAPTIVE MODULATION

We consider a single-carrier modem equipped with a num-

ber of transmission schemes. Assuming that the transmitter

has channel state information, the goal is to find the scheme

with maximal data rate for a target BER. The approach is

to estimate relevant channel parameters (multipath/Doppler

spread and SNR) at the receiver and transmit them back to the

transmitter. Then a decision on the next transmission scheme

is made based on the relationship between the BER of each

signal and the channel parameters. The underlying assumption

is that the channel varies very slowly with respect to the two-

way signal travel time.

Since underwater acoustic channels are characterised by

non-stationary fading, it is very tedious to derive a formula

for the average BER for each transmission scheme. Here,

we explore data mining based on large databases of channel

probes occurred at different areas and seasons. In particular,

we propose a decision tree [8] that can predict the BER

of a digital modulation signal depending on the estimated

channel parameters. Decision tree learning is conceptually

simple yet powerful. The tree recursively partitions the space

of input variables (i.e., channel/signal parameters) into a set of

rectangles (binary partition) and fits a minimum square error

(MSE) constant in each rectangle. The recursion is completed

when the MSE falls below a threshold. Finding the best binary

partition in terms of MSE is an NP-complete problem and so

we use the greedy Classification And Regression Tree (CART)

method [9].978-1-4799-7578-5/14/$31.00 c©2016 IEEE



Fig. 1. Regression tree structure for predicting the BER of 8-PSK signals

with various baud rates. The leaf nodes show the BER prediction. SNR is in

dB, DS stands for the delay spread (ms) and ND stands for the normalized

Doppler (Doppler spread × baud rate−1).

An example of a decision tree tailored to adaptive modu-

lation can be seen in Figure 1. The tree is trained by using

a dataset of 343 signals. All signals are based on 8-PSK

modulation but the bit rates range from 3000 to 12000 bps.

The received SNR varies between 8 dB and 30 dB. In the text

below, we provide details about these signals and describe

the way we processed them. Traversing the tree from the

leaf-nodes to the root-node, one can realize that the modem

can achieve about 10−3 BER at maximum rate (12 kbps)

only when the received SNR is larger than 18.6 dB and DS

is smaller than 9.3 ms. Furthermore, at high SNR (>18.6

dB) and long DS (>9.3 ms), the BER depends on ND as

well. Hence, the decision tree captures the tradeoff effect in

increasing the baud rate. That is, higher baud rates induce

more self-noise due to larger inter-symbol interference (ISI),

however, they lead to better channel tracking since pulse period

is smaller. Note that an advantage of a decision tree, with

respect to a neural network, for example, is its simplicity in

interpreting the results (the neural network behaves like a black

box).

III. TRANSMISSION MODES AND RECEIVER STRUCTURE

In this short paper, we consider different transmission rates

based on uncoded 2-PSK, 4-PSK and 8-PSK modulation. All

information symbols are pulse shaped via a raised cosine filter

with roll-off factor 0.25. Table I summarizes all signal types.

The receiver structure can be seen in Figure 2. The receiver

has three processing stages [10]: (a) motion-induced Doppler

compensation; (b) inter-symbol interference (ISI) mitigation

based on channel estimation; (c) adaptive linear equalization.

Each PSK signal is shifted to basedband, low-pass filtered and

coarsely synchronized based on a known chirp pulse. Motion

compensation is achieved by adjusting the sampling rate at

each symbol interval after extracting the phase rotation of the

detected PSK symbol. Next, the resulting signal is used to

produce an estimate of the channel impulse response based

on the improved-proportionate normalized least mean square

(IPNLMS) algorithm [11]. Combining past channel estimates

TABLE I

SIGNAL PACKETS USED IN REP15 TRIALS.

Modulation Band ( kHz) Duration ( s) Bit rate (bps)

2-PSK 10-15 1.22 4000

2-PSK 11-15 1.63 3000

2-PSK 11.9-14.1 2.45 2000

4-PSK 10-15 2.12 8000

4-PSK 11-15 2.83 6000

4-PSK 11.9-14.1 4.25 4000

4-PSK 12.4-13.6 8.50 2000

8-PSK 10-15 1.25 12000

8-PSK 11.9-14.1 2.50 6000

8-PSK 12.4-13.6 5.00 3000

with past transmitted symbols, an estimate of the post-cursor

ISI is subtracted from the received signal. Then, the ISI-

free signal is equalized by a linear filter producing a soft

estimate of the transmitted PSK symbol. The taps of the

feedforward filter are adapted via the exponentially-weighted

recursive least-squares (RLS) algorithm [1]. Note that our

receiver performs symbol-by-symbol adaptive resampling with

symbol-by-symbol adaptive channel estimation in a closed-

loop fashion. Consequently, fast platform motion is decoupled

from slow environmental fluctuations leading to better channel

estimates.

IV. REP15 DATA ANALYSIS

A. Data collection

The REP15-Atlantic experiment took place in the canal be-

tween the islands Faial and Pico, Azores, Portugal. Figure 3(a)

shows the bathymetric data and Figure 3(b) shows the sound

speed profile collected on July 8th, 2015. From the latter figure

observe that there were three sound speed layers. A warm

surface layer followed by an isospeed layer. Then, at about

20 m depth, the major thermocline starts causing downward

refraction of sound rays. In this paper, we analyse data from

three nodes, two transmitters and one receiver. All nodes were

suspended at a depth of about 7.5-8 m. One transmitter was

deployed off the NRP Gago Coutinho while the other was

deployed off a rigid-inflatable boat (RIB). The transmit sam-

pling frequency was 44.1 kHz. The receiver, was suspended

off a moored gateway buoy. The receive sampling frequency

was 96 kHz. The two transmitters were broadcasting the suite

of signals of Table I at different time intervals for two hours

(19:00-21:00 UTC). The signals arriving on the gateway buoy

were stored for post-processing. Different ranges (500 m -

2 km) and platform velocities (0-3 knots) were tested in order

to generate a rich dataset.

Here, we analyse 92 packet transmissions. The received

SNR ranges from -1 dB to 35 dB. The receiver operates in

training mode (i.e., the error that drives the equalizer is the

difference between the soft symbol estimate and the transmit-

ted symbol) to prohibit instability due to erroneous feedback.



Fig. 2. Block diagram of the channel-estimate-based decision feedback equalizer (CEB-DFE).

For some of the encountered channels (e.g., high SNR),

training mode mimics real-life scenario where the equalizer

would run in decision directed mode while erroneous feedback

would be alleviated by error correction coding. Furthermore,

the issue of non-stationary fading is tackled by assuming

short-term stationarity for hundreds of symbol intervals. In

particular, the BER as well as the desired parameters (SNR,

delay/Doppler spread) are computed after splitting the received

signal into non-overlapping segments of 200 ms long. As a

result, the number of processed 2-PSK, 4-PSK and 8-PSK

signals becomes 429, 482 and 343, respectively.

To gain further insight about the channel conditions dur-

ing REP15 trials, two channel impulse responses are shown

in Figures 3(c) and (d). Motion-induced Doppler effects are

removed and so any rapid variations are attributed to en-

vironmental changes. The 0 ms arrival corresponds to the

direct path and the observed arrivals after 20 ms correspond

to bottom/bottom-surface bounces due to the downward re-

fracting sound profile. Note that both links exhibit sparse

structure of arrivals, a feature that is exploited by the IPNLMS

algorithm for improved channel estimation.

B. Decision Tree-based regression

A decision tree is trained to learn the BER of the PSK

signals described above based on estimates of channel delay

and Doppler spread and the received SNR. The tree depth is

set to seven and the splitting process is stopped only when

some minimum node size reaches at least 15 (BER) samples.

The resulting tree has 16 terminal nodes (due to lack of space,

the tree is omitted). For a target BER of about 10−3, the tree

indicates various strategies. The most interesting one is an

interplay between 8-PSK and 4-PSK. In particular, the tree

suggests that:

• if SNR>20 dB and the delay spread is less than 6 ms
then choose 8-PSK at 12 kbps.

• if SNR∈[7 dB, 16 dB], the Doppler spread is less than

30 Hz and the delay spread is less than 10 ms then

choose QPSK at 4 kbps.

• if SNR<4 dB then no modulation scheme is possible to

achieve BER=10−3.

Figure 4(a) provides the tenfold cross validation error of the

BER prediction. At each run, 90% of the data is used for

training the tree and the remaining 10% (test set) is used for

prediction. In addition, each test set is chosen to be different

across different runs and hence, all ten test sets combined

represent the entire data set (1254 signals). From Figure 4(a)

one can see that the mean and median of the error prediction is

consistent across the ten runs, which indicates that the tree is

robust to random sampling effects. Figure 4(b) illustrates the

predicted BER when the tree is trained based on the entire

data set. The mean of the prediction error is 0.0057, which

is within the range of the mean value of the tenfold cross

validation error.

V. CONCLUSION

This paper presents the first attempt to use data mining

for adaptive modulation in underwater acoustic channels. We

developed a decision tree capable of choosing the fastest data

rate among a broad selection of single-carrier signals depend-

ing on channel state information. A dataset was recorded

during the REP15-Atlantic experiment where PSK signals of

various bit rates were tested under different channel condi-

tions. A key step was to provide reliable channel estimates

and BERs within short periods of time where channel fading

was stationary. This step was achieved by using an adaptive

equalizer that jointly performed motion compensation and

channel estimation on a symbol-by-symbol basis. Our results

demonstrated that the decision tree predicted the BER fairly

accurately. Moreover, the tree identified thresholds for relevant

channel parameters (SNR, delay/Doppler spread) required to

achieve a target BER. From a practical standpoint, these results

are very promising since they provide simple guidelines to

a software-defined modem to switch fluidly between various

transmissions schemes.

ACKNOWLEDGMENT

This work was made possible using data from the REP15-

Atlantic sea trial, co-organised by the Portuguese Navy, FEUP,

CMRE and the DOP/UAz. The authors would like to thank the

Captain and crew of the NRP Gago Coutinho for the excellent

support during the experiments.

REFERENCES

[1] J. G. Proakis, Digital Communications, 4th Ed., McGraw Hill, NY, 2000.
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