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Abstract

A maximum-entropy approach to generative similarity-based classifiers model is proposed. First, a descriptive set of similarity statistics is
assumed to be sufficient for classification. Then the class-conditional distributions of these descriptive statistics are estimated as the maximum-
entropy distributions subject to empirical moment constraints. The resulting exponential class-conditional distributions are used in a maximum a
posteriori decision rule, forming the similarity discriminant analysis (SDA) classifier. Simulated and real data experiments compare performance
to the k-nearest neighbor classifier, the nearest-centroid classifier, and the potential support vector machine (PSVM).
� 2008 Elsevier Ltd. All rights reserved.
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1. Overview

Similarity-based classifiers classify a test sample x given only
the pairwise similarities for the a test sample x and a set of
training samples {xi}, i=1, . . . , n [1–4]. The training samples’
class labels are also given and denoted {yi} for i = 1, . . . , n.
A similarity function s is a mapping that accepts two samples
x, z from some sample space x, z ∈ B, and returns a real
number. That is, s : B×B → �, where � ⊂ R. It is useful to
think of the sample space B as an abstract space, such as “the
space of all proteins,” or “the space of all blogs.” The similarity
s(x, z) is some judgement of how near samples x and z are,
but similarities are not required to satisfy metric properties
or any specific mathematical properties. The term “similarity-
based classification” is also used when the given information is
“dissimilarities,” where a dissimilarity is a judgement of how
far two samples are, but is not required to satisfy any specific
mathematical properties.

Similarity-based learning is a useful approach when samples
are described by categorical variables. For example, DNA is
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described as a sequence of bases, A, T, G, and G. Similarity-
based learning is of course appropriate when the similarity
or dissimilarity between samples is not a metric. For exam-
ple, driving-times between any two given locations is not a
metric, as it is often not symmetric and can violate the trian-
gle inequality. Categorical variables and non-metric similari-
ties/disssimilarities are common in fields such as bioinformat-
ics, information retrieval, and natural language processing [1,4].
Also, similarity-based learning may be a better model than stan-
dard Euclidean-space learning for how humans classify, as psy-
chologists have shown that metrics do not account for human
judgements of similarity in complex situations [5–7]. Laub et
al. have shown that non-metric similarities lead to information
that can be useful for pattern recognition [8].

The simplest method for similarity-based classification is the
nearest neighbor classifier, which determines the most-similar
training sample to the test sample, and classifies the test sample
as its most-similar neighbor’s class. In fact, nearest neighbor
classifiers using a tangent distortion [9] and a shape similarity
metric [10] have both been shown to achieve lower error than
metric k-NN for the MNIST character recognition task.

In this paper, we propose maximum-entropy generative
similarity-based classifiers, which we term similarity discrim-
inant analysis (SDA). We provide a review of the different

http://www.elsevier.com/locate/pr
mailto:luca@apl.washington.edu
mailto:gupta@ee.washingtonedu


2290 L. Cazzanti et al. / Pattern Recognition 41 (2008) 2289–2297

approaches to similarity-based classification, and discuss how
the proposed generative architecture ties together many of these
approaches. We compare the resulting log-linear SDA classi-
fier to the state-of-the-art in similarity-based classification on
benchmark data sets and on an illustrative simulated example.

Reviews of similarity functions relevant for pattern recogni-
tion can be found in Refs. [11,12]. Many similarity functions
are information theoretic, including information content simi-
larity [13], mutual information similarity [14,15], residual en-
tropy similarity [16], and the similarity defined by the com-
pressability of one sample given another [17,18].

2. Review of similarity-based classifiers

Similarity-based classifiers make decisions based on the out-
puts of a pairwise similarity function s and an explicit descrip-
tion of the sample space B is not required. That is, the similarity
function s can be treated as a black box by the classifier. If in
fact the sample space B is a known set of categorical features,
then naive Bayes, neural nets, and decision trees can also be
applied.

2.1. Nearest neighbors

Experiments have shown that nearest neighbors can per-
form well on practical similarity-based classification tasks
[2,9,10,19]. Condensed near-neighbor strategies replace the
set of training samples for each class with a set of prototypes
for that class. Usually the prototype set is an edited set of
the original training samples (also called edited nearest neigh-
bors), but the prototypes do not need to be from the original
training set. Many authors have considered strategies for con-
densing near-neighbors for similarity-based classification to
increase classification speed, decrease the required memory,
and possibly attain better performance [3,20–23].

2.2. Nearest centroid

An extreme form of condensed near-neighbors is to replace
each class’s training samples by one prototypical sample, of-
ten called a centroid. The resulting “nearest-centroid” classifier
can be considered a simple parametric model [20], but lacks a
probabilistic structure. The nearest-centroid approach classifies
x as the class

ŷ = arg max
h=1,...,G

s(x, �h), (1)

where �h is the representative centroid for the class h. A stan-
dard definition for the centroid of a set of training samples is
the training sample that has the maximum total similarity to all
the training samples of the same class [3,20]:

�h = arg max
�∈Xh

∑
z∈Xh

s(z, �), (2)

where Xh is the set of training samples from class h.
The nearest-centroid classifier is analogous to the nearest-

mean classifier in Euclidean space, which is the optimal

Euclidean-based classifier if one assumes Gaussian class-
conditional distributions and that each class covariance is the
identity matrix.

2.3. Embed in Euclidean space

One can embed the training and test samples in an Euclidean
space using multi-dimensional scaling [24], and then use
standard statistical learning methods in the Euclidean feature
space. More generally, the data can be embedded in a pseudo-
Euclidean space for classification [2,25]. The embedding ap-
proach can also be used for clustering, for example [26] embed
samples based on pairwise similarities in a low-dimensional
Euclidean space by computing a multi-dimensional scaling
solution subject to an entropy constraint. This results in an
Euclidean embedding that maximizes the separation between
clusters in a data set, while maintaining as much as possible
the original pairwise similarity structure of the data. For most
nonlinear embedding methods, classifying a new test sample
requires re-computing the metric space embedding for all the
data. If the underlying similarity relationships are not well
represented by a metric distance, the embedding may be rela-
tively high-dimensional, invoking the curse of dimensionality.
On the other hand, the Procrustes approach of embedding the
training samples in a low-dimensional Euclidean space may
fail to sufficiently capture the similarity relationships between
the samples [5,6,23,27].

2.4. Use the similarities to training samples as features

Similarity-based classification problems can be turned into
standard Euclidean-based learning problems by treating the n×
1 vector of similarities between a test sample and the n training
samples as a feature vector [2,28,29]. Graepel et al. [28] propose
a separating hyperplane classifier using this approach. Duin et
al. [2,29] consider various standard learning techniques for this
approach, including a regularized Fisher linear discriminant
classifier for this space.

An issue with using the vector of similarities as a feature
vector is that the feature vector size is equal to the number
of training samples, causing Bellman’s curse-of-dimensionality
difficulties for learning [30]. As investigated by Pekalska et al.
[2], one way to mitigate the problem that the dimension of the
feature space is equal to the number of training samples is to
regularize the covariance matrix when applying linear discrimi-
nant analysis (LDA) or quadratic discriminant analysis (QDA).
Another approach they suggest for solving the dimensionality
problem is to use only a subset of the training samples to de-
fine the feature vector. The results of Pekalska et al. show that,
on average over their different experiments, linear classifiers
built on the similarity vectors achieve similar errors as 1-nearest
neighbor, except in cases of severe noise, where the 1-nearest
neighbor has high error. Also, their similarity-based linear clas-
sifiers generally perform slightly better than first embedding
the training samples in an metric space and then applying a
linear classifier.
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2.5. Generalized support vector machines

One approach to building support vector classifiers for
similarity-based classification is to use the matrix of pairwise
training sample similarities as a kernel. If the similarity matrix
is symmetric and positive definite or conditionally positive def-
inite as defined by Schölkopf [31], then the similarity matrix
can be used as a kernel in standard support vector machines.
A generalized support vector machine, the potential support
vector machine (PSVM), has been developed that can be used
with any similarity matrix [4,32]. Experiments in this paper
compare the proposed generative approach to PSVM.

3. Maximum-entropy architecture for generative
similarity-based classifiers

Let a test sample x be a realization of the random variable
X ∈ B, where B is the sample space. Let the similarity function
be some function s : B × B → �, where � ⊂ R. For ease of
presentation, we assume that the sample space B is finite and
discrete, such that the space of the possible pairwise similarities
� is also finite and discrete; the continuous case is a trivial
generalization. Let Y ∈ G be the random variable denoting the
class label associated with x, where G is a finite set of G classes.
Let C(g, h) be the cost of classifying x as class g if the true
class is h.

An optimal classifier is the theoretical Bayes classifier [30],
which assigns a test sample x the class ŷ that minimizes the
expected misclassification cost

ŷ = arg min
f =1,...,G

G∑
g=1

C(f, g)P (Y = g|x), (3)

where C(f, g) is the cost of classifying the test sample x as
class f if the true class is g and is independent of x. In practice
the distribution P(g|x) is generally unknown.

We propose to create a generative model by assuming that
the relevant information about X ’s class label is captured by
some finite set T(X) of descriptive statistics. Some example
choices for T(X) are

T(X) = {s(X, �1), s(X, �2), . . . , s(X, �G)}, (4)

T(X) = {s(X, X1), s(X, X2), . . . , s(X, Xn)}, (5)

T(X) = {s(X, �1), (s(X,�1) − E[s(X, �1)])2, . . .},

T(X) =
⎧⎨
⎩

∑
z∈X1

s(X, z),
∑
z∈X2

s(X, z), . . .

⎫⎬
⎭ .

Given the assumption that the relevant information is contained
in T(x), the classification rule (3) for a particular test sample
x is to classify x as the class ŷ that solves

arg min
f =1,...,G

G∑
g=1

C(f, g)P (Y = g|T(x)).

Using Bayes rule, this is equivalent to the problem

arg min
f =1,...,G

G∑
g=1

C(f, g)P (T(x)|Y = g)P (Y = g). (6)

Next, we assume that each unknown class-conditional distribu-
tion P(T(x)|Y =g) has the same average value as the training
sample data from class g. That is, we assume that the mth de-
scriptive statistic Tm(x) has mean equal to the training sample
mean:

EP(T(x)|g)[Tm(X)] = 1

ng

∑
z∈Xg

Tm(z), (7)

for g=1, . . . , G and m=1, . . . , M , and where ng is the number
of training samples in class g. Given these M × G constraints,
there is some compact and convex feasible set of G class-
conditional distributions P(T(x)|Y = g). A feasible solution
will always exist because the constraints are based on the data.

As prescribed by Jaynes’ principle of maximum entropy [33],
we propose selecting the unique class conditional distributions
that satisfy (7) and maximize entropy. Maximum-entropy dis-
tributions have the maximum possible uncertainty, and in that
sense are the least assumptive solution. Given a set of moment
constraints, the maximum-entropy solution is known to have
exponential form [34]. Selecting the maximum-entropy distri-
bution subject to constraints is analogous to the generative clas-
sifier QDA. QDA models each class-conditional distribution as
a Gaussian [30], which is the maximum-entropy distribution
given the class’s training samples’ empirical mean vector and
covariance matrix.

For the gth class, solving the M constraints specified by (7)
for the maximum-entropy distribution yields

P̂ (T(x)|g) =
M∏

m=1

�gme�gmTm(x) (8)

=
M∏

m=1

P̂ (Tm(x)|g), (9)

where the parameters {�gm, �gm} have unique solutions which
satisfy the constraints defined by (7). The equality given in (9)
establishes that under the maximum-entropy assumption the
statistics comprising the set T(x) are conditionally indepen-
dent given the class label. Thus, one could equivalently de-
scribe this model as the maximum-entropy solution given the
constraints

EP(Tm(x)|g)[Tm(X)] = 1

ng

∑
z∈Xg

Tm(z) (10)

for g = 1, . . . , G and m = 1, . . . , M , because the estimated
P(T(x)|Y = h) is the same.

Substituting the maximum-entropy solution (8) into (6) cre-
ates the SDA classification rule: classify x as the class ŷ which
solves

arg max
f =1,...,G

G∑
g=1

C(f, g)P (g)

M∏
m=1

�gme�gmTm(x). (11)
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The expression in (11) shows that under the SDA model the sim-
ilarity statistics are conditionally independent given the class
label. Although one does not expect this conditional indepen-
dence to be strictly valid, the hypothesis is that it will be an
effective model, just as the naive Bayes’ model that features
are independent is optimistic but useful.

3.1. SDA based on class centroids

As an illustrative example, we consider in more depth the
two-class SDA classifier using the descriptive statistics given
in (4) and zero–one misclassification costs (that is, C(f, g)=0
if f = g and C(f, g) = 1 otherwise). In this case, the SDA
classification rule (11) is: choose class 1 if

P̂ (s(x, �1)|Y = 1)

P̂ (s(x, �1)|Y = 2)

P̂ (s(x, �2)|Y = 1)

P̂ (s(x, �2)|Y = 2)

P (Y = 1)

P (Y = 2)
> 1. (12)

Applying the maximum-entropy solution for the class-
conditional distributions, (12) becomes: choose class one if

�11e�11s(x,�1)

�21e�21s(x,�1)

�12e�12s(x,�2)

�22e�22s(x,�2)

P (Y = 1)

P (Y = 2)
> 1. (13)

This SDA classifier uses the same information about the test
sample as the nearest-centroid classifier, s(x, �1) and s(x, �2),
but models the probability distribution of these statistics under
the hypothesis that the sample belongs to class one or to class
two. The probability distributions of the similarities capture the
characteristic average deviation for each class and the average
cross-class deviations. It is helpful to group the terms in (12)
into the ratio term P̂ (s(x, �1)|Y = 1)/P̂ (s(x, �1)|Y = 2) and
the ratio term P̂ (s(x, �2)|Y =1)/P̂ (s(x, �2)|Y =2). The first of
these ratio terms establishes whether the similarity between the
test sample x and the class one centroid �1 is better explained
probabilistically by assuming x is from class one or from class
two. Likewise, the second ratio term establishes whether the
similarity s(x, �2) is better explained probabilistically by the
hypothesis that x is from class one or from class two. For
example, consider the case in which class one training samples
are tightly clustered around �1, but class two training samples
have on average low similarity to �2. Then even if a test sample
x is slightly more similar to �1 such that s(x, �1) > s(x, �2),
SDA can learn that class one points should be very similar to
�1, and can correctly classify x as a class two sample. This is
analogous to the action of QDA in the case that class one’s
variance is very low compared to class two’s variance.

A simpler method to generalize the nearest-centroid classifier
to take into account the different distributions of each class
would be to directly take into account the average similarity
s̄gg between class g training samples and a class g centroid �g ,
where

s̄gg = (1/ng)
∑

xj ∈Xg

s(xj , �g).

Then, classify a test sample x as class ŷ where

ŷ = arg max
g

s(x, �g)

s̄gg

. (14)

This is analogous to the Gaussian-derived rule of classifying
by the distances to the class means inversely weighted by each
class’s standard deviation: ‖x − �g‖/�g . We term the classifier
given in (14) the nearest-centroid adjusted classifier.

4. Experiments

4.1. Perturbed centroids simulation

In this two-class simulation, each sample is described by d
binary features such that B={0, 1}d . For simplicity, given sam-
ples x, z ∈ B, the similarity s(x, z) is the number of features
of x and z that are the same (called the counting, or Rao simi-
larity). Each class is defined by one prototypical set of features
(a centroid) denoted by c1 and c2, respectively. Every sample
drawn from each class is a class centroid with some features
possibly changed, according to a feature perturbation probabil-
ity. For class one the perturbation probability is p1 = 1

3 ; for
class two it is p2 = 1

30 .
The simulations span several values for the feature dimen-

sions d and are run several times to better estimate mean er-
ror rates. Each time the simulation is run, a random c1 ∈ B
and c2 ∈ B are chosen uniformly from B. Training and test
samples are independently and identically distributed, and each
class is equally likely. A training or test sample z drawn from
class one starts out as z = c1, but then for each i = 1, . . . , d,
z’s ith feature is changed so that z[i] �= c1[i] with probability
p1. Thus on average, np1 features will be different than c1’s
features. Likewise, a training or test sample v drawn from class
two starts out as v = c2, but then for each i = 1, . . . , d, v’s ith
feature is changed so that v[i] �= c2[i] with probability p2.

For each run of the simulation and for each number of fea-
tures considered, the neighborhood size k for k-NN is deter-
mined independently by leave-one-out cross-validation on the
training set of 100 samples; the range of tested values for k
is {1, 2, . . . , 20, 29, 39, . . . , 99}. The optimum k is then used
to classify 1000 test samples. Similarly, the parameters for the
PSVM classifier are cross-validated over the range of possible
values � = {0.1, 0.2, . . . , 1} and C = {1, 51, 101, . . . , 951}.

Classifiers are trained on 100 training samples and tested on
1000 test samples per run; 20 runs are executed for a total of
20,000 test samples. The number of features d ranges from d=2
to 200 in the simulation, but the number of training samples is
kept constant at 100, so that d = 200 is a sparsely populated
feature space. The perturbed centroid simulation results are in
Table 1. For each value of d, the lowest mean cross-validation
error rate is in bold. Also in bold for each d are the error rates
which are not statistically significantly different from the lowest
mean error rate, as determined by the Wilcoxon signed rank
test for paired differences, with a significance level of 0.05.

The performance of all classifiers increases as d increases.
For large d, the feature space is sparsely populated by the train-
ing and test samples, which are segregated around their corre-
sponding generating centroids. This leads to good classification
performance for all classifiers. For small d, the feature space
is densely populated by the samples, and the two classes con-
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Table 1
Perturbed centroids experiment—misclasssification percentage for 20,000 test
samples for various classifiers and numbers of features

d SDA Nearest centroid k-NN PSVM

2 35.13 23.47 15.58 16.07
4 23.97 22.54 12.05 13.01
8 12.85 14.07 6.19 6.21

12 10.16 11.50 4.26 3.74
25 7.36 11.49 3.49 2.16
40 3.65 8.79 2.79 1.33
50 2.71 7.94 2.31 1.33
75 2.56 7.83 2.27 1.43

100 2.05 5.92 2.16 1.65
125 1.67 6.21 1.96 1.58
150 1.23 4.86 1.44 1.20
175 1.37 4.28 1.60 1.33
200 1.26 4.20 1.38 1.26

siderably overlap, negatively affecting the classification perfor-
mance.

With few exceptions the PSVM performs best. This is likely
because the PSVM classifies a test sample based on a weighted
sum of its similarities to the entire training set. In contrast, k-
NN makes use of a subset of the training samples and thus has
less information available to classify. SDA and nearest centroid
also use less information. It is plausible that the ability to make
use of all the similarity information in the training set and to
optimally weight the similarities to the training samples gives
the PSVM a performance advantage over the other techniques.
However, in spite of this advantage, the results show that al-
most always the SDA classifier yields statistically equivalent
performance to the PSVM, and in some cases matches or ex-
ceeds its results. Thus SDA produces good classification results
using fewer information. This quality can be immensely useful
when few training samples are available.

SDA performs better than nearest centroid. This shows that
generative models based on the similarity of samples to local or
global class centroids provide increased discriminative power
over the non-generative centroid-based similarity models.

The similarity-space k-NN performs well, albeit not as well
as the PSVM. Compared to SDA, k-NN performs better only
at lower dimensions. Thus SDA seems to have an advantage
when the feature space is very sparse. This powerful quality
can be very useful in practical applications when there are few
training samples available.

4.2. Solar Flare data

Like QDA, SDA based on one centroid per class has too
much model bias to be appropriate for every classification prob-
lem, but will be useful when each class is well-modeled by a
centroid, and in problems where a class is described by rela-
tively little data. In this section, we reduce the model bias by
using extra information to choose multiple centroids for one of
the classes.

The Solar Flare Dataset in the UCI database [35] has 1066
samples describing an active region of the sun over a 24 h

Table 2
Solar flare leave-one-out error

Classifier Error percentage

Solar flare data: C problem
1 Nearest neighbor 25.61
3 Nearest neighbors 18.57
5 Nearest neighbors 18.67
Nearest centroid 57.88
Nearest-centroid adjusted 58.35
PSVM 16.79
SDA 17.07

Solar flare data: M problem
1 Nearest neighbor 4.69
3 Nearest neighbors 3.38
5 Nearest neighbors 3.38
Nearest centroid 36.77
Nearest-centroid adjusted 96.72
PSVM 3.38
SDA 3.38

Solar flare data: X problem
1 Nearest neighbor 0.56
3 Nearest neighbors 0.56
5 Nearest neighbors 0.47
Nearest centroid 7.97
Nearest-centroid adjusted 4.60
PSVM 0.47
SDA 0.47

period, and each sample is described by 10 categorical fea-
tures. Each sample also has a corresponding number describ-
ing how many C, M, and X flares were recorded during that
time, ranging from 0 to 8 flares of each type. We treat the data
set as three separate classification problems corresponding to
the flare-types C, M, and X. Each flare-type’s classification is
framed as a two-class problem with class labels “no flares of
that type” and “one or more flares of that type.” Framing it as
a two-class problem made it straightforward to compare with
the PSVM classifier, which is naturally a two-class classifier.
We used the counting similarity function for simplicity (that
is, s(x, z) is the number of features that x and z have in com-
mon). For the centroid-based classifiers we treat the “one or
more flares of that type,” class as being composed of eight sub-
classes, corresponding to the actual number of flares, and use a
centroid for each of these subclasses. For the nearest-centroid
and nearest-centroid adjusted classifiers, a test sample was then
classified based on whether or not its nearest centroid belonged
to the class “one or more flares.” For SDA, a test sample x was
classified as “no flares” if

P(Y = 0|x) >

8∑
k=1

P(Y = k|x),

where k is the number of flares counted for each of the original
nine classes. The distribution of the training samples’ classes
is very uneven: 82.9% of the samples had no C flares, 96.6%
of the samples had no M flares, and 99.5% of the samples had
no X flares.

As detailed in Table 2, the top similarity-based classifiers
for this problem are SDA and PSVM. Their comparative per-
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formance is shown in Figs. 1–3 for different achievable false
positive and true positive rates. The different achievable rates
shown correspond to different thresholds set for the SDA and
PSVM class comparisons, where the thresholds were chosen to
be equally spaced between the smallest range of thresholds that
spanned the performance from 0% false positives to 100% false
positives. The parameters for the PSVM (C, �) were calculated
by leave-one-out cross-validation on each training set with the
default threshold value of 0. The PSVM cross-validation values
tested were � ∈ {0.1, 0.2, . . . , 1} and C ∈ {1, 11, . . . , 1001}.
Depending on the allowed false positive rate, SDA performs
slightly better or worse than the PSVM.

4.3. Protein data

Many bioinformatics prediction problems are formulated in
terms of pairwise similarities or dissimilarities. An example is
the protein data set used by [4] and available from the authors.
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Table 3
Protein leave-one-out error

Classifier Classification problem

HA HB M G
v. all v. all v. all v. all

1 Nearest neighbor 77 51 13 13
3 Nearest neighbors 85 55 15 14
5 Nearest neighbors 81 50 16 14
Nearest centroid 30 42 0 12
Nearest-centroid adjusted 30 25 4 22
PSVM 1 2 0 0
SDA 29 29 0 1

For this data set, pairwise dissimilarity values are calculated
using a sequence alignment program, which counts the num-
ber of amino acids that differ between two sequences [36]. The
sample space B is not enumerated, so it is not possible to use
naive Bayes; classification must be done based only on the pair-
wise dissimilarity values. As done in Ref. [4], we performed
all-against-one classification on the 213 proteins that had the
class labels “HA” (72 samples), “HB” (72 samples), “M” (39
samples), and “G” (30 samples). We used the PSVM parame-
ters for this problem that were cross-validated by Obermayer et
al. in their paper proposing PSVM, reported to be C =100, and
�= 0.2 [4]. The class priors were estimated to be the empirical
probability of seeing a sample from each class, with Laplace
correction [37]. The set of possible similarities � is needed to
solve for the SDA parameters � and �, but was not directly
available, so � was approximated as the set of empirical simi-
larities that occurred in the training samples’ similarity matrix.
The nearest centroid, nearest-centroid adjusted, and SDA were
implemented as simple mixture-models, where each of the four
classes was represented by its own centroid.

Table 3 shows the leave-one-out misclassification error (the
results were rounded for display). SDA performs better than
the nearest-centroid model classifiers and k-NN classifier, but
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does poorly compared to the PSVM at distinguishing samples
in class “HA” and “HB”. The relatively low error rates on
class “M” and class “G” suggest that those classes are well-
modeled by a unimodal model for the features. The analysis is
complicated because one SDA model is used for a combination
of three protein classes.

5. SDA and other classification approaches

In the next subsections we discuss the relationship of SDA
to QDA and to naive Bayes. We also show that SDA can be
viewed as embedding the similarity data into a metric feature
space.

5.1. SDA and naive Bayes

Consider the case that each sample is described by a set of
binary features, that is, the sample space B={0, 1}N for some
finite value of N. Given z ∈ B, let the ith feature be denoted
z[i] ∈ {0, 1}. Consider the SDA classifier using descriptive
statistics T(x)={x[1], x[2], . . . , x[N ]}. In this case, there are
N marginal class-conditional distributions to estimate for each
class, as per (9). For each marginal distribution there are two
unknowns, P(x[i] = 0|Y = g) and P(x[i] = 1|Y = g), and two
constraints: the normalization constraint and the expectation
constraint given in (7):

P(x[i] = 0|g) + P(x[i] = 1|g) = 1,

0 × P(x[i] = 0|g) + 1 × P(x[i] = 1|g) = 1

ng

∑
z∈Xg

Iz[i]=1,

where I is the indicator function. These are the same con-
straints as for the naive Bayes classifier, which estimates class-
conditional probabilities for the features as the product of prob-
abilities for each feature. There is only one possible solution
for the class-conditional distributions given these constraints.
Thus, for binary features and T(x) = {x[1], x[2], . . . , x[N ]},
SDA and naive Bayes are equivalent.

5.2. SDA and QDA

QDA is a generative classifier that models each class by a
Gaussian class-conditional distribution in a d-dimensional Eu-
clidean feature space [30]. In standard QDA a mean û ∈ Rd and
covariance matrix �̂ ∈ Rd ×Rd are estimated from the training
samples for each class, often using maximum likelihood (ML).
The class prior P(Y = g) may be either known or estimated,
also with ML. The discriminant function DQDA,g(x) for the
gth class is the logarithm of the Gaussian class-conditional dis-
tribution with the class prior term added:

DQDA,g(x) = − 1
2 (x − ûg)

T �̂−1
g (x − ûg) + ûT

g �−1
g x

− 1
2 log |�̂g| + log P(Y = g). (15)

A test point x ∈ Rd is classified by determining which class-
conditional Gaussian distribution is most likely to have gener-

ated the test point. The classification rule is written in terms of
DQDA,g as

ŷ = arg max
g

DQDA,g(x), (16)

where for simplicity (0, 1) misclassification costs are assumed.
QDA has a dual nature. It is both a Gaussian random vec-

tor model on continuous features and the maximum-entropy
distribution subject to constraints on û and �̂ based on the ob-
served data [34]. In this respect, SDA is like QDA, because
it too models a class-conditional generating distribution as the
maximum-entropy distribution given moment constraints based
on the data. However, SDA is more general than QDA. A major
difference between QDA and SDA is that QDA is rooted in an
Euclidean representation of the feature vectors, and the class-
conditional Gaussian distributions directly model the probabil-
ity of the test point x. SDA does not rely on the Euclidean
assumption, and the class-conditional exponential distributions
model some set of descriptive statistics T(x). Thus, in QDA
the tested quantity is the probability of the d-dimensional test
feature vector x, but in SDA the tested quantity is the probabil-
ity of the descriptive statistics T(x) calculated as functions of
the test sample x ∈ B.

Another major difference between QDA and SDA arises
when the Euclidean features are not Gaussian (e.g. they may be
discrete or continuous and finite). In this case the QDA assump-
tion that the class-conditional models be Gaussian is incorrect.
One may still use (15) to model the gth class discriminant and
estimate ûg and �̂g from the data, but the model will be inher-
ently biased. To avoid this problem, one could instead appeal
to the dual nature of QDA, and estimate the class-conditional
model as the maximum-entropy distribution subject to second
order constraints. However, this approach still results in a Gaus-
sian class-conditional model which is only an approximation of
the true underlying generative distribution; as such, bias is still
a problem. Thus, QDA is limited to class-conditional models
for which the Gaussian assumption is a good approximation
for the underlying distribution. On the other hand, SDA can
seamlessly model both discrete and continuous variables. The
exponential class-conditional probability models produced by
SDA are applicable to continuous or discrete descriptive statis-
tics of any order. The nature of the available data is an impor-
tant consideration when determining the most appropriate clas-
sification approach. This underscores the value of developing
similarity-based techniques that do not rely on metric assump-
tions and Euclidean feature spaces: SDA creates a new family
of flexible classifiers for similarity-based learning that is more
general than QDA.

5.3. Descriptive statistics form a derivative feature space

SDA can be interpreted as forming probability models over
a feature space where the mth feature for sample x is given
by Tm(x). This is another method to turn a similarity-based
classification problem into a metric learning problem: define
the features T(x), assume a metric for that space (such as Eu-
clidean distance), and then one could apply any standard metric
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statistical classifier to this derived feature space. In fact, as dis-
cussed in Section 2.4, some proposed similarity-based classi-
fiers train classifiers on the derived n-dimensional feature space
made up of the descriptive statistics given in (5). However, as
mentioned in Section 2.4, the curse of dimensionality limits
the applicability of this strategy. For example, estimating co-
variance matrices for class-conditional QDA models in a high-
dimensional derivative feature space is generally ill-posed. The
simple and flexible SDA architecture based on class centroids
does not suffer from as severely from the curse of dimension-
ality and retains the powerful interpretability properties of gen-
erative models.

6. Discussion

The contributions of this paper are threefold: proposing a
maximum entropy architecture for generative similarity-based
classifiers; relating many of the previously proposed similarity-
based classifiers to this architecture, and establishing that the
proposed SDA classifiers can have practical advantages in terms
of performance, interpretability, and ease of use.

As with LDA and QDA, the power of a generative classi-
fier depends on how well its model matches the true class-
conditional distributions. Gaussian mixture model classifiers
are an effective approach to Euclidean-based learning, and SDA
using mixture models should have many of the same benefits. In
this paper, SDA was implemented using mixtures for the Pro-
tein and Flare problem based on the subclass information that
was available. This simple SDA mixture worked well for the
Flare problem, but using one centroid for the subclass HA and
HB for the Protein data set was not adequate. This suggests that
the HA and HB proteins are not well-modeled by variations on
one prototypical protein. The design of general SDA mixture
models is an open research question, though the growing lit-
erature on finding prototypes for similarity-based classification
(see Section 2.1) provides a starting point.

Our experiments showed PSVM to be a flexible and pow-
erful similarity-based classifier, but we ran into computational
difficulties enumerating the necessary n×n pairwise similarity
matrix when the number of training samples n was large. Near-
est neighbor similarity-based classifiers are flexible, but did not
perform as well as the other classifiers in general, and in practice
require additional cross-validation to determine the best num-
ber of neighbors. In comparison, the proposed SDA classifier
computationally scales better than PSVM as n increases, and
unlike the PSVM or k-NN, does not require cross-validation.
Perhaps the most important advantage of SDA is that it cre-
ates probability estimates, which can be combined with priors,
misclassification costs, and used with any number of classes or
hierarchical models of classes.

Lastly, we note that the choice of similarity function is an im-
portant aspect of similarity-based classification. There are many
open research questions about the interplay between similarity-
based classifiers and similarity measures.
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