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Abstract

Generative Models for Similarity-based Classification

Luca Cazzanti

Chair of the Supervisory Committee:
Assistant Professor Maya Gupta

Dept. Electrical Engineering

This work proposes a generative framework for similarity-based classification: similar-

ity discriminant analysis (SDA). The classifiers in the SDA framework are similarity-

based, because they classify based on the pairwise similarities of samples, and they

are generative, because they build class-conditional probability models of the pairwise

similarities. The problem of estimating the class-conditional similarity probability

models is solved by applying the maximum entropy principle, under the constraint

that the mean similarities be equal to the average similarities observed in a set of

training samples. Thus, the class-conditional distributions in the SDA framework

are exponential functions of the similarities. Within the SDA framework, several

classifiers are analyzed in detail: the SDA classifier, the local SDA classifier, the

nnSDA classifier, and the mixture SDA classifier. Their performance is evaluated on

simulated and benchmark data sets, and compared to the performance of existing

similarity-based classifiers which are not generative.
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Chapter 1

INTRODUCTION

The contribution of this dissertation is a generative framework for similarity-

based classification. The two defining characteristics of the proposed classification

framework are similarity-based and generative. The classifiers in this framework are

similarity-based, because they classify based on the pairwise similarities of data sam-

ples, and they are generative, because they build class-dependent probability models

of the similarities between samples. Similarity-based classifiers already exist; classi-

fiers based on generative models already exist. This work proposes a new family of

classifiers that are both similarity-based and generative. The new family of classifiers

forms a framework for classification termed similarity discriminant analysis (SDA).

Metric-space classifiers are the most common classification methods. The samples

are represented as vectors of numerical features in Euclidean space and the metric-

space classifiers act upon the numerical vectors. Examples of metric-space classi-

fiers are linear and quadratic discriminant analysis (LDA and QDA), Gaussian mix-

ture models (GMMs), support vector machines (SVMs), and k-nearest neighbors(k-

NN) [27, 74]. The implicit assumption of metric-space classifiers is that the pairwise

similarity between the samples is represented by a metric distance function. For exam-

ple, the distance between two samples in Euclidean space measures their dissimilarity.

However, in some cases metric distance functions fail to capture the full complexity

of the similarity (or dissimilarity) relationships between the samples [19,71–73]. Sim-

ilarity is more general than distance!

The need to classify samples in similarity space has spurred the development of
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similarity-based classifiers. SVMs have been adapted to work in similarity space

[30]; k-NN can also be employed in similarity space. However, none of the current

similarity-based classifiers are generative. There is an unmet need for generative clas-

sifiers that work in similarity space. Generative classifiers such as the metric-learning

LDA, QDA, and GMMS, base their results on probabilistic models of the classes,

and offer several advantages in terms of interpretability and flexibility. They pro-

duce probabilities, which are easily interpretable and can be flexibly incorporated

into larger classification systems comprising different types of classifiers. They are

natively multiclass and easily take into account classification costs and class prior

probabilities. This work proposes classifiers that operate in similarity space and re-

tain the powerful flexibility and interpretability properties of metric-space generative

classifiers.

The problem of classifying samples based only on their pairwise similarities may

be divided into two sub-problems: measuring the similarity between samples and clas-

sifying the samples based on their pairwise similarities. Chapter 2 reviews current

approaches to these two components of similarity-based classification. Section 2.1

reviews ways to measure the similarity between samples that are not easily described

by numerical vectors in a d-dimensional space, the standard sample description in

metric learning. Section 2.2 reviews some existing, non-generative similarity-based

classifiers which will be compared to the proposed classifiers in later chapters.

Within the general SDA framework, this dissertation details several classifiers. The

SDA classifier is at the foundation of SDA. It classifies based on the class-conditional

generative models of the similarity of the samples to representative class prototypes,

or centroids. The SDA framework is introduced, developed, and discussed with the

aid of this centroid-based SDA classifier. Then, the centroid-based SDA classifier is

generalized beyond class centroids to arbitrary descriptive statistics. One such non-

centroidal statistic is the nearest neighbor similarity, which gives rise to the nearest

neighbor SDA classifier, (nnSDA). Other possible statistics are described, illustrating
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the power and generality of the SDA framework. Chapter 3 introduces the core of

the SDA framework and the SDA and nnSDA classifiers.

The local SDA classifier is a local version of the SDA classifier. It builds similarity-

based class-conditional generative models within a neighborhood of a test sample to

be classified. The local class models are endowed with low bias and retain the powerful

quality of interpretability associated with generative probability models. Chapter

4 introduces local SDA and shows that it is a consistent classifier, in the sense that

its error rate converges to the Bayes error rate, which is the best possible error rate

attainable by a classifier.

The mixture SDA classifier draws from the well-established metric learning mix-

ture model research. It generalizes the single-centroid SDA classifier to a mixture of

single-centroid SDA components. The mixture SDA classifier can be trained with an

expectation-maximization (EM) algorithm which parallels the standard EM approach

for the well-known Gaussian mixture models. Chapter 5 introduces the mixture SDA

classifier, discusses its metric learning analog, and details the EM methods for mixture

SDA algorithm.

In Chapter 6, the performance of the SDA, local SDA, mixture SDA, and nnSDA

classifiers is compared to that of other classifiers in a series of computer experiments.

The nearest centroid (NC), local nearest centroid (local NC), k-nearest neighbors

(kNN), and condensed nearest neighbors (CNN) are all similarity-based classifiers

which are not generative. They help assess the advantages and disadvantages of

using generative models in similarity space. A general support vector machine, called

PSVM, is also used for comparison. The PSVM is the state-of-the-art in similarity-

based classification and provides a good benchmark for assessing the performance of

the proposed classifiers. The data sets used in the experiments comprise simulated

and real-world data from benchmark databases and previous work published by other

authors.

Chapter 7 addresses future directions in similarity-based learning.
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Chapter 2

APPROACHES TO SIMILARITY AND
SIMILARITY-BASED CLASSIFICATION

The problem of classifying samples based only on their pairwise similarities may

be divided into two sub-problems: measuring the similarity between samples and clas-

sifying the samples based on their pairwise similarities. This chapter reviews current

approaches to these two components of similarity-based classification. Section 2.1 re-

views ways to measure the similarity between samples which are not easily described

by numerical vectors in a d-dimensional space, the standard sample description in

metric learning. However, the focus of this dissertation is on classifying based on

given similarities; it is not on measuring the similarity. Thus, Section 2.2 reviews

existing similarity-based classifiers which will be compared to this dissertation’s con-

tributions in later chapters.

2.1 Measuring Similarity

In standard metric learning, samples are represented by d-dimensional numerical vec-

tors in a Euclidean space. Each element of a vector quantifies a particular feature of

the sample. For example, fish width and lightness of fish scales might be two features

used in an automatic fish-packing system that groups similar fish together [16]. In

this example, the natural way to describe the similarity between the fish is to compute

the Euclidean distance, or dissimilarity, between their feature vector representations.

More generally, the feature vectors may be thought of as embedded in a linear d-

dimensional space endowed with a norm which measures their dissimilarity. Standard

metric learning classifiers rely on this numerical feature vector representation to de-
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scribe the samples and on the concomitant distance metric to quantify their pairwise

similarities.

For example, quadratic discriminant analysis (QDA) classifies feature vectors

based on Gaussian models of their class-conditional distributions [16]. Local clas-

sifiers such as the k-nearest neighbors (k-NN) classifier rely on Euclidean distance to

define a neighborhood of most-similar (nearest) samples to a test sample [27]. Stan-

dard support vector machines (SVMs) define similarity between samples by way of

kernel functions which rely on the distance between the vector representations of the

samples [27].

Judging similarity between samples characterized by many disparate data types

poses challenges of data representation and quantitative comparison. For example,

modern databases store information from disparate data sources in different formats:

multimedia databases store audio, video and text data; proteomics databases store

information on proteins, genetic sequences, and related annotations; internet traf-

fic databases store mouse click histories, user profiles, and marketing rules; home-

land security databases may store data on individuals and organizations, annotations

from intelligence reports, and maritime shipping records. These database objects, or

samples, are described by both numerical and non-numerical data. For example, a

security database might store cell phone records in textual form and voice parame-

ters for speaker recognition in numerical form. Representing all these different data

types with continuous-valued numbers in a geometric feature space is not appropriate.

Thus, current metric space classifiers which rely on metric similarity functions may

not be applicable.

Furthermore, in some applications, only the pairwise similarities may be observed,

and the underlying features may be inaccessible. For example, Chapter 6 discusses

a dataset of sonar echoes for which the pairwise similarities are judged by human

listeners. For this dataset, the putative perceptual features from which the human

similarity ratings are generated are unknown – indeed eliciting the features remains an
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ongoing research problem [55] – but the similarity ratings are nonetheless successfully

used for classification. Another dataset discussed in Chapter 6 for which the pair-

wise similarities, but not the features, are available is the protein benchmark dataset

used in [30]. In many applications, the similarity relationship between samples may

lack the metric properties usually associated with distance (minimality, symmetry,

triangle inequality); thus, using a metric function to express the pairwise similarities

is suboptimal. Similarities are more general than distances and require more general

functions than metrics [71].

The need to fuse disparate data types and to generalize metrics to similarities has

spurred research in several general classes of similarity functions. One general class

of non-metric similarity functions for pattern recognition is the set-theoretic linear

contrast model of similarity [19, 71, 72], due to cognitive psychologist Amos Tversky.

Tversky’s model assumes that each sample can be represented as a set of features,

for example the samples shown in Fig. 2.1 can each be represented as a set of up to

four features: eyes, nose, mouth, and hair. Then, the set-theoretic similarity between

two samples x and z is calculated as some function of the intersection between the

two samples’ feature sets, and some function of the set-exclusions of the two samples’

feature sets [71, 72]:

sl
Tversky(x, z) = f(x ∩ z)− αf(x \ z)− βf(z \ x), (2.1)

where f is a positive saliency function that is monotonically increasing with respect

to set inclusion, and α and β are fixed positive real numbers. Thus x and z are more

similar if their intersection increases, but less similar depending on which features

belong exclusively to x or exclusively to z. Tversky also proposed a ratio version of

the contrast model where similarity is defined

sr
Tversky(x, z) =

f(x ∩ z)

f(x ∩ z) + αf(x \ z) + βf(z \ x)
. (2.2)

Tversky’s set-theoretic similarity models have been successful at explaining hu-

man similarity judgements in various similarity-assessment tasks, particularly when
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the objects are not described well by low-level numerical features, and when the assess-

ment of similarity involves considerable cognitive effort (e.g. similarity of countries or

professions) rather than perceptual discrimination (e.g. similarity of audio and visual

stimuli) [19, 61,73].

Class One Samples Class Two Samples

class one centroid

µ1 µ2

class two centroid

Figure 2.1: Five samples are drawn for class one, and five samples are drawn for
class two (note the classes overlap). Each sample can be described as a set of up
to four facial features: eyes, nose, mouth, and hair. One sample from each class is
labeled as a “centroid” of the class, as per the definition given in (2.10), where the
similarity between any two samples is defined to be the number of facial features the
two samples have in common.

Tversky’s models of similarity are flexible. First, they are not tied to, and indeed

overcome the limits of, a vector representation of samples in Euclidean space and

the assumption that high similarity and close proximity are inextricably bound to

each other. In fact, Tversky and Hutchinson [73] have shown that multidimensional

scaling solutions to similarity problems often do not capture faithfully the underlying

similarity relationships of data sets. Second, set-theoretic models can explain how

context affects the similarity of objects [72]. Finally, Tversky’s models allow for
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and explain asymmetry in similarity judgments. Metric distances by definition are

symmetric, so that if a metric is taken to signify similarity, then it must be that the

similarity of x to z is identical to the similarity of z to x. Pseudo-metrics relax this

requirement and provide asymmetric measures. Tversky’s models allow, but do not

mandate, asymmetry, and are thus more flexible.

Tversky’s contrast models have been applied outside of psychology. One example

is the use of Tversky’s ratio contrast model for searching databases that store chem-

ical structure information in binary vectors [76]. In fact, it can be easily shown that

Tversky’s contrast models generalize the Hamming, Jaccard, and other distance mea-

sures commonly used to assess similarity between binary vectors [76,79]. One simply

describes sets as binary vectors in which a 1 (or 0) indicates the presence (or absence)

of a feature. The saliency function f is the sum of the elements of a binary vector,

or, more generally, the cardinality of a set. For example, the similarity between any

two samples in Fig. 2.1 could be calculated with the linear contrast model by setting

α = β = 0 and using set cardinality for f . This choice reduces to measuring similarity

using the number of features which the two samples have in common. This simple

function is called the counting, or Hamming, similarity.

Another general class of similarity functions is designed to measure similarities

between objects described by nominal (non-numeric) and unordered features. The

Value Difference Metric (VDM) [68] is a dissimilarity metric designed to measure the

distance between samples described by non-numeric features; it has been shown very

effective in classification problems involving symbolic features and nearest-neighbor

classifiers. Given a sample x described by symbolic features – for example, all the

unique nouns, verbs, and adjectives in a document – the value difference 4i for the

ith feature is a table of pairwise differences of class probabilities conditioned on the

features,

4i(x[i] = a, x[i] = b) = |P̂ (Y = g|x[i] = a)− P̂ (Y = g|x[i] = b)|, (2.3)
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where a and b are two possible values of the ith feature of training sample x, and

where P̂Y |x[i] is estimated from a training set of samples. Then, the VDM dissimilarity

between a sample x and a sample z is computed as

dvdm(x, z) =
∑

i

(4i(x[i], z[i]))q, (2.4)

where typically the integer q = 2.

Heterogeneous metrics that can deal with both numerical and non-numerical fea-

tures [13,77] have been derived from the VDM. Variants of the VDM may be metrics

or pseudo-metrics. Other metrics use fuzzy logic to assign numerical truth values to

fuzzy predicates and then use set-theoretic models to evaluate similarity based on the

assigned truth values [59,60].

Another general class of similarity functions that are useful in pattern recognition

derives from information theory, and includes information content similarity [57],

mutual information similarity [28, 41], residual entropy similarity [10], and similarity

defined by the compressibility of one sample given another [39].

Lin [41] defines an information-theoretic similarity measure based on the informa-

tion content of feature vectors, where information of each feature is defined in the

standard way I(x[i]) = − log P (x[i]):

sLin(x, z) =
2I(common(x, z))

I(description(x, z))
.

By common(x, z), Lin means the set of features common to both objects x and z; by

description(x, z) he means the set of features needed to completely describe both

objects x and z. Lin assumes that features are independent in his examples.

Recent work [10] has shown that Lin’s similarity is a special case of Tversky’s ratio

contrast model, using information content as the saliency function, f = I, and with

α = β = 0.5. Thus Lin’s similarity is both set-theoretic and information-theoretic.

Lin’s similarity takes into account context by incorporating the probability of features

(their “information”) into the similarity definition. The similarity is greater if the
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common features are less likely. For some applications, the context will be very

important and must be captured more strongly by the similarity function. To this

end, one might ask, if one knew that a random sample R was at least described by

the features in common between objects x and z, then how uncertain would one still

be about R? This would specify the similarity of x and z in light of the context of the

distribution of R. The residual entropy similarity is a set- and information-theoretic

similarity that strongly captures context based on this idea [10].

The residual entropy similarity is based on Tversky’s linear contrast model, with

α = β = 0.5, and mutual information as the saliency function: f(x∩z) = I(R; x∩z ⊂
R), f(x \ z) = I(R; x \ z ⊂ R), and f(z \ x) = I(R; z \ x ⊂ R). Then, because

I(R; X) = H(R)−H(R|X), the residual entropy similarity is defined:

sre(x, z) = −H(R|x ∩ z ⊂ R) +
H(R|x \ z ⊂ R)

2
+

H(R|z \ x ⊂ R)

2
, (2.5)

where H(R|x ∩ z ∈ R) = −∑
r∈B P (R = r|x ∩ z ∈ R) log P (R = r|x ∩ z ∈ R),

the terms H(R|x \ z ⊂ R) and H(R|z \ x ⊂ R) are analogously defined, and B is

the sample domain. Research into the residual entropy similarity and its ability to

capture context is ongoing.

More comprehensive reviews of similarities can be found in [60] and [18]. The

experiments described in Chapter 6 make extensive use of the counting and VDM

similarities.

2.2 Similarity-based Classifiers

Similarity-based classifiers are defined as those classifiers that require only a pairwise

similarity – a description of the samples themselves is not needed. Similarity-based

classifiers classify test samples given a labeled set of training samples, the pairwise

similarity values of the training samples, and the similarity of the test sample to

the training samples. If the description of the samples in terms of feature vectors is

available, an existing or ad hoc similarity function that maps any two samples to a



11

similarity value may be used [4, 30, 33, 54]. This section reviews current similarity-

based classifiers.

2.2.1 Nearest Neighbor

The simplest method for similarity-based classification is the nearest neighbor classi-

fier, which determines the most similar training sample z to the test sample x, and

classifies x as z’s class:

ŷ = arg max
h=1,...,G

(
max
z∈Xh

s(x, z)

)
, (2.6)

where Xh is the set of training samples from class h. More generally, the k-nearest

neighbor classifier (k-NN) determines a neighborhood of k most similar training sam-

ples to the test sample x, and classifies x as the most-frequently occurring class label

among the neighbors. Experiments have shown that nearest neighbors can perform

well on practical similarity-based classification tasks [2,13,54,66]. For example, near-

est neighbor classifiers using a tangent distortion metric and a shape similarity metric

have both been shown to achieve very low error on the MNIST character recognition

task.

2.2.2 Condensed Nearest Neighbor

Condensed near-neighbor strategies replace the set of training samples for each class

with a set of prototypes for that class. Usually the prototype set is an edited set of the

original training samples (also called edited nearest neighbors), but the prototypes do

not need to be from the original training set. Let ch be the number of the prototypes

{µhl} for class h; then, the condensed nearest neighbor rule is to classify a test sample

x as the class of the prototype to which it is most similar,

ŷ = arg max
h=1,...,G

(
max

l=1,...,ch

s(x, µhl)

)
(2.7)
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Many authors have considered strategies for condensing near-neighbors for similarity-

based classification to increase classification speed, decrease the required memory, re-

move outliers, and possibly attain better performance [33,38,43,53,75]. A well-known

strategy for condensing nearest neighbors in non-metric spaces is the k-medoids algo-

rithm [27]. Given a set of ch candidate prototypes selected from Xh, the remaining

training samples z ∈ Xh are assigned to their nearest (most similar) prototype, so

that the set Xh of all training samples from class h is partitioned in ch mutually-

exclusive subsets {Xhl}, and each Xhl is uniquely associated with candidate prototype

µhl. Then, the lth prototype for the hth class is updated according to the standard

maximum similarity update rule, which selects the new µhl as the training sample in

Xhl which is most similar to all other samples in Xhl,

µ∗hl = arg max
µhl∈Xhl

∑
z∈Xhl

s(z, µhl). (2.8)

The training samples are then reassigned to the updated prototypes, and the update

rule (2.8) is repeated. The reassignment and update steps are repeated until a pre-

determined maximum number of iterations is reached or until the updated prototypes

µ∗hl = µhl for all h and l. The number of prototypes in each class ch is determined by

cross-validation; the initial prototypes {µhl} are selected randomly from the training

set.

2.2.3 Nearest Centroid

An extreme form of condensed near-neighbors is to replace each class’s training sam-

ples by one prototypical sample, often called a centroid. The resulting nearest centroid

classifier can be considered a simple parametric model [75], though it lacks a prob-

abilistic structure. Let s(x, z) be the similarity between a sample x and a sample

z, and let there be a finite set of classes 1, 2, . . . , G. The nearest centroid approach

classifies x as the class

ŷ = arg max
h=1,...,G

s(x, µh), (2.9)
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where µh is the representative centroid for the class h. A standard definition for the

centroid of a set of training samples is the training sample that has the maximum

total similarity to all the training samples of the same class [33, 75]:

µh = arg max
µ∈Xh

∑
z∈Xh

s(z, µ). (2.10)

For example, if each sample in Fig. 2.1 is described as a set of up to four facial features

(eyes, nose, mouth, hair), and the similarity between two samples is defined to be the

number of features that the two samples have in common, then the samples marked

as µ1 and µ2 are the class centroids as per (2.10).

A variation of the nearest centroid classifier is the local nearest centroid classi-

fier, which is an analog to the local nearest means classifier proposed by Mitani and

Hamamoto [46,47]. In this variant, the class centroids (2.10) are computed from a lo-

cal neighborhood of each test point x; they are not computed from the entire training

set. The neighborhood may be defined in many ways. The most common definition is

the k-nearest neighbors. In this case, local nearest centroid is like the k-NN classifier,

except that it classifies x as the class of its nearest centroid where the centroids are

computed from the k-nearest neighbors of x.

The nearest centroid classifier is analogous to the nearest-mean classifier in Eu-

clidean space, which is the optimal Euclidean-based classifier if one assumes that the

class-conditional distributions are Gaussian, the class priors are equal, and that each

class covariance is the identity matrix [16, 27]. The local nearest centroid classifier

is analogous to the local nearest-mean classifier [46, 47] discussed in Chapter 4. Re-

sults for the novel methods presented in this dissertation are compared to the nearest

centroid and local nearest centroid classifiers in Chapter 6.

2.2.4 Embedding in Euclidean Space — Multi-dimensional Scaling

One approach to similarity-based classification is to embed the training and test

samples in Euclidean space using multidimensional scaling (MDS) [78], and then use
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standard statistical learning methods in the Euclidean feature space. MDS maps pair-

wise similarity relationships onto a d-dimensional Euclidean space and is extensively

used in psychology to visualize similarity relationships on two- or three-dimensional

graphs [71]. More generally, the samples can be embedded in a pseudo-Euclidean

space for classification [20,54]. The embedding approach can also be used for cluster-

ing, for example Buhmann and Hofmann embed samples based on pairwise similarities

in a low-dimensional Euclidean space by computing a multidimensional scaling solu-

tion subject to an entropy constraint [8] . This results in an Euclidean embedding that

maximizes the separation between clusters in a data set, while maintaining as much

as possible the original pairwise similarity structure of the data. One disadvantage

of most nonlinear embedding methods is that classifying a new test sample requires

re-computing the metric space embedding for all the data. This is a problem if all

the test data or training data are not available at one time. Another disadvantage is

that if the underlying similarity relationships are not well represented by a metric dis-

tance, then no embedding may be appropriate; for example, forcing samples related

by an asymmetric similarity function to be classified using Euclidean distance may be

suboptimal. Also, if the underlying similarity relationships are not well represented

by a metric distance, the embedding may be relatively high-dimensional, invoking

the curse of dimensionality. On the other hand, embedding the training samples

in a low-dimensional Euclidean space may fail to sufficiently capture the similarity

relationships between the samples [43,71–73].

2.2.5 Using the Similarities-to-Training-Samples as Features

Similarity-based classification problems can also be turned into standard Euclidean-

based learning problems by treating the N × 1 vector of similarities between a test

sample x and the N training samples {zi}, i = 1, 2, . . . N as a feature vector [17,21,54]

u = [s(x, z1)s(x, z2) . . . s(x, zN)]T . (2.11)
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Graepel et al. [21] propose a separating hyperplane classifier using this approach.

Duin et al. [17, 54] consider various standard learning techniques for this approach,

including a regularized Fisher linear discriminant classifier for this space.

An issue with using the vector of similarities as a feature vector is that the feature

vector size is equal to the number of training samples, causing curse of dimensionality

difficulties for learning. As investigated by Pekalska et al. [54], one way to mitigate

the problem that the dimension of the feature space is equal to the number of train-

ing samples is to regularize the covariance matrix when applying linear discriminant

analysis (LDA) or quadratic discriminant analysis (QDA). Another approach they

suggest for solving the dimensionality problem is to use only a subset of the training

samples to define the feature vector. The results of Pekalska et al. show that, on av-

erage over their different experiments, linear classifiers built on the similarity vectors

achieve similar errors as 1-nearest neighbor, except in cases of severe noise, where the

1-nearest neighbor has high error. Also, their similarity-based linear classifiers gen-

erally perform slightly better than first embedding the training samples in a metric

space and then applying a linear classifier.

2.2.6 Support Vector Machines

The popular support vector machines (SVMs) are a family of classifiers which have

been successfully applied to wide a variety of classification problems [9, 27, 49, 74]. A

SVM constructs a linear boundary in a high-dimensional Euclidean space such that

the distance (or margin) of the sample closest to the boundary is maximized. Each

sample is described by a d-dimensional feature vector in Euclidean space and its class

label is g ∈ {+1,−1}. Given training samples {zi} and their corresponding class

labels yi, i = 1, 2, . . . N the SVM classification rule is to classify a test sample x as

ŷ = sign

(
N∑

i=1

yiα̂iK(x, zi) + b

)
. (2.12)
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The coefficients α̂ = [α̂1α̂2 . . . α̂N ]T , are computed by solving the constrained convex

optimization problem

α̂ = arg max
α

(
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(zi, zj)

)
(2.13)

s. t.
N∑

i=1

αiyi = 0,

0 ≤ αi ≤ C,

where C ∈ R+ is a problem-dependent constant upper bound on the α̂ coefficients.

The constant term b is computed by solving yi

(∑N
j=1 yjα̂jK(zi, zj) + b

)
= 1 for αi

constrained as in (2.13). The kernel K(x, zi) is a symmetric, positive definite function

which relates the test sample x to the training sample zi.

Thus, a SVM solves a classification problem by first transforming the original d-

dimensional feature space into a N -dimensional space by way of the N × N kernel

K(x, zi), and then producing a linear classification boundary in the transformed space.

The boundary is the separating hyperplane defined by the coefficients α̂. Practitioners

choose the kernel function based on the particular classification problem to be solved.

Popular choices for the kernel are

Klinear(x, zi) = (〈x, zi〉+ 1)q,

KGaussian(x, zi) = exp(−‖x− zi‖2/σ), (2.14)

Ksigmoid(x, zi) = tanh(κ1〈x, zi〉+ κ2),

where 〈x, zi〉 denotes the inner product between the test feature vector x and the

training feature vector zi.

One can view the kernel K(x, zi) as the similarity function s(x, zi) and interpret

the SVM approach as a type of similarity-based classifier. For example, one could des-

ignate one of the kernels in (2.14) as s(x, zi). Then the SVM finds the optimum sepa-

rating hyperplane in the N -dimensional Euclidean feature space where the ith feature

is s(x, zi), the similarity of test sample x to the ith training sample zi. Furthermore,
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the original feature vectors x and zi may themselves be vectors of application-specific

similarities. Liao and Noble [40] classify newly discovered amino acid sequences into

families of known proteins using such a composition of similarity functions. First,

they use a specialized similarity function s̄(u, vi) specifically designed to measure how

biological sequences are related. The numerical feature vectors x are formed from sim-

ilarities between an amino acid sequence u and N labeled sequences vi used as training

set, so that x = [s̄(u, v1) s̄(u, v2) . . . s̄(u, vN)] and zi = [s̄(vi, v1) s̄(vi, v2) . . . s̄(vi, vN)].

The resulting 1×N numerical vectors are transformed into kernel-based similarities

by use of an inner product and an exponential kernel. The resulting N × N kernel

matrix is used for training SVMs to classify new amino acid sequences. The kernel

matrix K(x, zi) may be viewed as a matrix of pairwise amino acid sequence similarities

s(x, zi) derived from numerical vectors of ad-hoc biological similarities.

Viewing the kernel as a matrix of pairwise similarities leads to interpreting SVMs

as a particular case of the similarities-to-training-samples approach described in Sec-

tion 2.2.5. As such, SVMs may suffer from the same curse of dimensionality dif-

ficulties. More fundamentally, a difficulty with applying SVMs to similarity-based

classification problems is in the definition of the kernels. Most widely-used kernels,

like the ones in (2.14), rely on the properties of vector spaces, such as the inner prod-

uct and the norm, to compute the similarity. This approach is not appropriate when

the samples are not easily characterized by numerical vectors in Euclidean space,

when the underlying features are not accessible, or when the similarity relationship

between objects is not captured by any of the standard kernel functions.

If the kernel function cannot be computed from features, but the pairwise similar-

ities are nonetheless available, then one approach to building similarity-based SVM

classifiers is to use the matrix of pairwise training sample similarities as a kernel. If the

provided similarity matrix is symmetric and positive definite or conditionally positive

definite as defined by [62], then the similarity matrix can be used as a kernel in stan-

dard SVMs, so that K(zi, zj) = s(zi, zj) in (2.13). Modified support vector techniques
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must be used if the pairwise similarity matrix does not satisfy these properties.

2.2.7 Generalized Support Vector Machines

A generalized SVM, the potential support vector machine (PSVM), has been devel-

oped that can be used with any similarity matrix [29,30]. The similarity can be very

general and need not rely on the inner product of Euclidean feature vectors. For the

PSVM, the N ×N matrix of training samples’ pairwise similarities is the SVM kernel

matrix K(zi, zj) = s(zi, zj), where zi, zj are training samples. Thus, the classification

rule for PSVM is the same as (2.12), but with the similarities directly appearing in

the discriminant expression

ŷ = sign

(
N∑

i=1

α̂iK(x, zi) + b

)

= sign

(
N∑

i=1

α̂is(x, zi) + b

)
, (2.15)

where b = 1/N
∑N

i=1 yi. As for the SVM, the optimum PSVM hyperplane coefficients

α̂ are computed by solving a constrained optimization problem. However, the objec-

tive function is different from the SVM objective (2.13); it depends both on the kernel

K and on the squared kernel Q = KT K [37]:

α̂ = arg min
α

1

2
αT Qα− yT Kα + ε‖α‖1 (2.16)

s. t.− C < αi < C,

where y = [y1y2 . . . yN ] is the vector of training samples class labels, and ε ∈ R+

and C ∈ R+ are problem-dependent, parameters which respectively regularize the

minimization problem and limit the magnitude of the solution. The solution is the

vector α̂ which optimally weights the similarities of a test sample to the N training

samples.

The PSVM is a binary linear classifier in the Euclidean space where the ith di-

mension is the similarity of a test sample to the ith training sample. One difficulty
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with the PSVM is that it requires enumerating N × N matrices, which is computa-

tionally infeasible given large N . Also, the PSVM, like other SVM-based classifiers,

naturally works for binary classification problems. While SVMs have been adapted

to multi-class problems [32], no multi-class PSVM results are available in the liter-

ature. Additionally, the PSVM requires the time-consuming task of cross-validating

two parameters, ε and C and risks overfitting them. Experiments in this work com-

pare the classification performance of the proposed generative approaches to that of

the PSVM.
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Chapter 3

SIMILARITY DISCRIMINANT ANALYSIS

This chapter introduces similarity discriminant analysis (SDA). In standard met-

ric learning, quadratic discriminant analysis (QDA) is a generative classifier that gen-

eralizes the nearest-mean classifier by modeling each class-conditional distribution as

a Gaussian. Analogously, SDA is a generative similarity-based classifier that general-

izes the nearest-centroid classifier [75] by modeling each class-conditional distribution

with a parametric probability model. The SDA class-conditional probability models

have exponential form, because they are derived as the maximum entropy distribu-

tions subject to constraints on the mean similarities of the data to the class centroids.

As with other parametric approaches to classification, the resulting log-linear SDA

classifier is powerful when it effectively models the true generating distribution. Sec-

tion 3.1 introduces SDA and shows how it classifies. Section 3.2 extends SDA from

using class centroids to using arbitrary descriptive statistics to discriminate between

the classes, including continuous-valued statistics. Section 3.3 details the relationship

of SDA to other learning approaches – naive Bayes, QDA, LDA, SVM, and PSVM –

with focus on comparing SDA to metric approaches when the similarities are used as

metric features. Section 3.4 discusses how one could build mixed models that com-

bine standard metric features and similarity statistics from heterogeneous data, that

is samples described by both numeric and categorical features.

3.1 A Generative Centroid-based Classifier

Assume a class centroid µh has been determined for the hth class, where h = 1, . . . , G.

A problem with the nearest centroid classifier given in (2.9) is that it does not take
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into account the variability of the similarities to the centroid within a class. An

example of this issue is shown in Fig. 2.1: samples from class one have similarity of

3 or 4 to the class one centroid, whereas samples from class two have similarities in

the range 0 − 3 to the class two centroid. To take into account this variability, first

consider a simple generalization of nearest centroid, here called the adjusted nearest

centroid classifier : classify a test sample x as class ŷ where

ŷ = arg max
h=1,...,G

s(x, µh)

s̄hh

, (3.1)

and where s̄hh is the average similarity of class h samples to the class h centroid,

s̄hh =
1

nh

∑
z∈Xh

s(z, µh),

where nh = |Xh|. The adjusted nearest centroid classifier is analogous to the one-

dimensional Gaussian rule of classifying based on the the variance-weighted distances

to the class means, ‖x− µ̃h‖/σ̃h, where x, µ̃h, σ̃h ∈ R. The adjusted nearest centroid

classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic

structure, and takes into account only the similarity of a sample to one class centroid.

Thus, a generative centroid-based classifier that models the probability distribu-

tion of the test sample similarity statistics s(x, µh) for each h is proposed. Begin with

the Bayes classifier [27], which assigns a test sample x the class ŷ that minimizes the

expected misclassification cost,

ŷ = arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|x), (3.2)

where C(f, g) is the cost of classifying the test sample x as class f if the true class

is g and P (g|x) is the probability that sample x belongs in class g . In practice the

distribution P (g|x) is generally unknown, and thus the Bayes classifier of (3.2) is an

unattainable ideal.

Assume that all test and training samples come from some abstract space of

samples B, which might be an ill-defined space, such as B is the set of all amino
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acids, or B is the set of all terrorist events, or B is the set of all women who gave

birth to twins. Let x, µh, z ∈ B, and let the similarity function be some function

s : B×B → Ω, where Ω ⊂ R. If the set of possible samples B is finite, then the space

of the pairwise similarities Ω will also be finite, and hence discrete. For simplicity, in

this section assume that Ω is a finite discrete space. Continuous and possibly infinite

spaces B, Ω are briefly discussed in Section 3.2.3.

Consider a random test sample X with random class label Y , where x will denote

a realization of X. Assume that the relevant information about X’s class label is

captured by the set T (X) of G descriptive statistics

T (X) = {s(X,µ1), s(X, µ2), . . . , s(X,µG)}.

That is, the relevant information about x is captured by its similarity to each class

centroid. Under this assumption, given a particular test sample x, the classification

rule (3.2) becomes: classify x as class ŷ that solves

arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|T (x)).

Using Bayes rule, this is equivalent to the problem

arg min
f=1,...,G

G∑
g=1

C(f, g)P (T (x)|Y = g)P (Y = g). (3.3)

Note that P (T (x)|Y = g) is the probability of seeing a particular set of similarities

between the test sample x and the G class centroids {µ1, µ2, . . . , µG} given that x is

a class g sample.

Next, assume that each unknown class-conditional distribution P (T (x)|Y = g)

has the same average value as the training sample data from class g. That is, given

a random test sample X there will be a random similarity s(X,µh); constrain the

class-conditional distribution P (T (x)|Y = g) such that

EP (T (x)|Y =g)[s(X, µh)] =
1

ng

∑
z∈Xg

s(z, µh), (3.4)
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holds for each g and h where ng is the number of training samples of class g. Each

constraint requires that the class-conditional expectation of one of the elements of

T (X) is equal to the maximum likelihood estimate of that element given the train-

ing data. This makes for G constraints for each class-conditional distribution, for a

total of G×G constraints because there are G class-conditional distributions. Given

these constraints, there is some compact and convex feasible set of class-conditional

distributions. A feasible solution will always exist because the constraints are based

on the data.

As prescribed by Jaynes’ principle of maximum entropy [34], a unique class-

conditional joint distribution is selected by choosing the maximum entropy solution

that satisfies (3.4). Maximum entropy distributions have the maximum possible un-

certainty, such that they are as uniform as possible while still satisfying given con-

straints. Given a set of moment constraints, the maximum entropy solution is known

to have exponential form [14]. For example, in standard metric learning, the Gaussian

class-conditional distribution model used in LDA and QDA is the maximum entropy

distribution given a specific mean vector and covariance matrix [14].

The maximum entropy distribution that satisfies the moment constraints specified

in (3.4) is

P̂ (T (x)|Y = g) = γge
(
PG

h=1 λghs(x,µh)), (3.5)

where {γg, λg1, λg2, . . . , λgG} are a unique set that ensures that the constraints (3.4) are

satisfied and that P̂ (T (x)|Y = g) is non-negative and normalized. Rewrite equation

(3.5) as

P̂ (T (x)|Y = g) =
G∏

h=1

γghe
λghs(x,µh) (3.6)

where
∏

h γgh = γg. Let

P̂ (s(x, µh)|Y = g) = γghe
λghs(x,µh);
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then (3.6) can be written

P̂ (T (x)|Y = g) =
G∏

h=1

P̂ (s(x, µh)|Y = g).

That is, under the maximum entropy assumption, the joint distribution on T (x) is

the product of the marginal distributions on each similarity statistic comprising the

set T (X). Thus, the similarity statistics are conditionally independent given the class

label under this model. Although one does not expect this conditional independence

to be strictly valid, the hypothesis is that it will be an effective model, just as the

naive Bayes’ model that features are independent is optimistic but useful.

Substituting the maximum entropy solution (3.5) into (3.3) yields the classification

rule: classify x as the class ŷ which solves

arg min
f=1,...,G

G∑
g=1

C(f, g)

(
G∏

h=1

γghe
λghs(x,µh)

)
P (Y = g). (3.7)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for

λgh. Then given {λgh}, the {γgh} are trivially found using the normalization con-

straint. Solving for λgh is straightforward; for example, one uses the Nelder-Mead

optimizer built into Matlab (version 15) in the fminsearch() function [45]. This is

the method used throughout this work. As an alternative, one may find the probabil-

ity mass function with maximum entropy, subject to the constraints, without a priori

knowledge that the solution is exponential.

The classifier given in (3.7) is termed the similarity discriminant analysis (SDA).

3.1.1 Analysis of the Two Class Case

This section further analyzes the two class case G = 2 for equal class prior probabilities

and zero-one costs, that is C(f, g) = 1 for f 6= g and C(f, g) = 0 for f = g. Then the

classification rule (3.7) becomes: choose class 1 if

P (s(x, µ1)|Y = 1)

P (s(x, µ1)|Y = 2)

P (s(x, µ2)|Y = 1)

P (s(x, µ2)|Y = 2)
> 1. (3.8)
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Applying the maximum entropy solution for the class-conditional distributions, (3.8)

becomes: choose class 1 if

γ11e
λ11s(x,µ1)

γ21eλ21s(x,µ1)

γ12e
λ12s(x,µ2)

γ22eλ22s(x,µ2)
> 1. (3.9)

The probability distributions of the similarities capture the characteristic average

deviation for each class and the average cross-class deviations. In (3.8), the ratio

term
P (s(x, µ1)|Y = 1)

P (s(x, µ1)|Y = 2)

calculates whether the similarity between the test sample x and the class one centroid

µ1 is better explained probabilistically by assuming x is from class one or class two.

Likewise, in (3.8), the ratio term

P (s(x, µ2)|Y = 1)

P (s(x, µ2)|Y = 2)

establishes whether the similarity s(x, µ2) is better explained probabilistically by the

hypothesis that x is in class one or class two.

Let us analyze the generative model for the training samples given in Fig. 2.1.

As before, each sample is considered to be a set of up to four facial features (eyes,

nose, mouth, hair), and the similarity of two samples is calculated to be the number

of features they have in common. Recall that in similarity-based classification we

assume that we might have only the pairwise similarities to use to classify. For

example, applying the nearest centroid classifier as per (2.9) to the training samples,

two of the class two samples would be misclassified because they are more similar to

the class one centroid than to the class two centroid. In addition, the other class two

samples are equidistant from the two class centroids; thus, depending on how ties are

resolved, all of the class two samples could be misclassified.

To apply the generative model one must estimate the necessary probabilities. Let

us begin with P (s(x, µ1)|Y = 1), noting it is a pmf over the five possible similarity

values. The average similarity of class one samples to the class one centroid is (4+3+
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3+3+3)/5 = 3.2. Thus the generative estimate P̂ (s(x, µ1)|Y = 1) will be exponential

with E[P̂ (s(x, µ1)|Y = 1))] = 3.2. Since the uniform distribution over the possible

similarities 0, 1, 2, 3, 4 has mean 2, it must be that the estimated P̂ (s(x, µ1)|Y = 1) is

an increasing exponential pmf over the possible similarities 0, 1, 2, 3, 4 (the estimated

parameters are λ11 ≈ .73, γ11 ≈ .03). It is intuitive that higher similarities between a

class one sample and the class one centroid are more probable.

Next, consider the probability distribution of the similarities between class two

samples and the class two centroid. The average similarity shown in Fig. 2.1 is

(3 + 0 + 1 + 1 + 1)/5 = 1.2. Thus, the constraint on the estimated probability

P̂ (s(x, µ2)|Y = 2) is E[P̂ (s(x, µ1)|Y = 1))] = 1.2. Since the estimated probability

must be an exponential pmf over the possible similarities 0, 1, 2, 3, 4, the pmf must be

a decreasing exponential (the estimated parameters are λ22 ≈ −.43, γ22 ≈ .40). That

is, the model predicts that class two samples will not be very similar to the class two

centroid.

It remains to estimate the cross-class pmf’s. The estimated pmf P̂ (s(x, µ2)|Y = 1)

is constrained to have expectation equal to (3 + 2 + 2 + 2 + 3)/5 = 2.4, and thus

is a slightly-increasing exponential pmf (the estimated parameters are λ12 ≈ .20,

γ12 ≈ .13). That is, class one samples are predicted to be somewhat similar to the

class two centroid. Last, the estimated pmf P̂ (s(x, µ1)|Y = 2) has expectation equal

to (3 + 0 + 2 + 2 + 1)/5 = 1.6, leading to a slightly decreasing exponential pmf (the

estimated parameters are λ21 ≈ −.20, γ21 ≈ .29). Thus, the model predicts that class

two samples will not be very similar to either the class two centroid or the class one

centroid, but that they will be actually slightly more similar to the class one centroid.

To classify a given test sample x, the estimated pmf’s are used to calculate the

discriminant value on the left-hand side of (3.8). In Fig. 3.1, each of the vertices

of the surface corresponds to a possible similarity pair (s(x, µ1), s(x, µ2)), and has

height equal to the resulting discriminant value. Each vertex is labeled with its

predicted class, as per the classification rule (3.8). Some of these test similarity pairs
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are not achievable with any set of features, for example, it is not possible to achieve

s(x, µ2) = 4 for any sample x, because µ2 has only three facial features. However,

the SDA classifier does not know this, and it models a pmf over the given set of

possible similarities. As an example of how this classifier differs from the nearest

centroid classifier, consider the test sample x = {hair,mouth}, which has s(x, µ1) = 2,

s(x, µ2) = 1. The nearest centroid classifier would classify x as class one, whereas

SDA classifies it as class two.
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Figure 3.1: Corresponding to the samples shown in Fig. 2.1, for each possible pair of
test sample similarities s(x, µ1) and s(x, µ2), the figure shows the classifier discrimi-
nant value and the class label, as per (3.8).

3.2 General Generative Models for Similarity-based Classification

The previous section introduced SDA for the case when the descriptive statistics are

the similarities of the samples to the class centroids. This section generalizes SDA to
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arbitrary descriptive statistics T (x) which can be used to discriminate different classes

and describes the resulting general generative model for classifying with arbitrary

statistics.

3.2.1 Descriptive Statistics

Several possibilities for the descriptive statistics T (x) are described below.

Centroid Definitions

A standard centroid definition was given in (2.10). Another choice is to allow a class

prototype that is not constrained to be a training sample,

µ∗h = arg max
µ∈B

∑
z∈Xh

s(z, µ). (3.10)

In this case the solution µ∗h requires a description of the entire space of possible samples

B. In practice, one may not know the entire sample space B, only the training samples

X , so it may not be possible to calculate µ∗h.

A third definition of a class prototype is based on Tversky’s analysis of similarity-

based near-neighbor relationships [64,73], and takes into account the similarity-based

ranks of a training sample’s near-neighbors. Define the neighborhood N (z) ⊆ X of

a sample z as the set of training samples whose nearest neighbor in similarity space

is z. The popularity of z is the size of its neighborhood |N (z)|. The class centroid is

the sample with the highest popularity, that is,

µh = arg max
z∈Xh

|N (z)|. (3.11)

This centroid is the training sample that is most often the closest neighbor of the

training samples in the class. Ties in popularity are broken by selecting the sample

with the highest total similarity to its neighbors.
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Higher Order and Non-Centroidal Descriptive Statistics

Given a set of class centroids {µh}, higher-order statistics could be used as, or added

to, the set of descriptive statistics T (X), such as (s(X,µh)− E[s(X,µh)])
2, or cross-

class statistics, such as (s(X,µh)− E[s(X,µg)])
2. Or, instead of the centroid-based

statistics {s(X, µh)}, it might be more appropriate to use the nonparametric statistics

formed by the total pairwise similarity for each class h, such that the hth descriptive

statistic in test set T (X) is
∑

z∈Xh
s(X, z).

Nearest Neighbor Similarity

A descriptive statistic that is not centroid-based is the nearest neighbor similarity : a

test sample’s similarity to its most similar training sample. Given a sample x and the

training samples z ∈ X , the nearest neighbor similarity is defined

snn(x) = max
z∈X

s(x, z). (3.12)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be

viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN)

discussed in Section 2.2.1. That classifier labels x with the same class label as its

nearest neighbor without making use of any information about its similarity to such

nearest neighbor. The nnSDA classifier, on the other hand, classifies x as the class of

its nearest neighbor based on a probabilistic model of snn(x). The probability model

is computed with the mean-constrained maximum entropy approach of Section 3.1,

which results in exponential solutions. In this case, the constraint is that the mean

of the distribution must be the same as the empirical average of the observed nearest

neighbor similarities. Denote by snn,h(X) the random similarity of a random test

sample X to its nearest neighbor in class h. For nnSDA, the constraint is written as

EP (T (x)|Y =g)[snn,h(X)] =
1

ng

∑
z∈Xg

snn,h(z), (3.13)
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and the classification rule becomes to classify as the class ŷ that solves

arg min
f=1,...,G

G∑
g=1

C(f, g)

(
G∏

h=1

γghe
λghsnn,h(x)

)
P (Y = g), (3.14)

where the parameters λgh and γgh are computed with the same numerical optimization

method used for SDA.

The experiments in Chapter 6 compare various similarity-based classifiers on var-

ious data sets. SDA and local SDA use the similarity to the maximum-sum similarity

centroid (2.10) as the descriptive statistic. The nearest-centroid (NC), local nearest

centroid (local NC) and the condensed nearest neighbor (CNN) classifiers also use

(2.10). The nnSDA classifier uses (3.12). As further discussed in the next section, the

SDA framework accommodates any desired set of descriptive statistics T (x): different

similarity functions could be mixed, dissimilarities and similarities can be mixed, and

so on.

3.2.2 Generative Classifier from Arbitrary Descriptive Statistics

Given an arbitrary set of M descriptive statistics T (x), the same reasoning of Section

3.1 produces a generative similarity-based classifier. First, the assumption is that

T (x) is sufficient information to classify x leads to the classification rule given in

(3.3). Second, for the mth descriptive statistic Tm(x) ∈ T (x), m = 1, . . .M , one

assumes that its mean with respect to the class conditional distribution of T (x) is

equal to the training sample mean:

EP (T (x)|g)[Tm(X)] =
1

ng

∑
z∈Xg

Tm(z). (3.15)
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Third, given the M × G constraints specified by (3.15), one estimates the class-

conditional distribution to be the maximum entropy distribution,

P̂ (T (x)|g) =
M∏

m=1

γgmeλgmTm(x) (3.16)

=
M∏

m=1

P̂ (Tm(x)|g).

Substituting the maximum entropy solution (3.16) into (3.3) yields the SDA clas-

sification rule: classify x as the class ŷ which solves

arg min
f=1,...,G

G∑
g=1

C(f, g)P (g)
M∏

m=1

γgmeλgmTm(x) . (3.17)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described

in Section 3.1.

3.2.3 Continuous-valued Statistics

The generative classification models presented in this chapter can be extended to the

case in which the statistics T (x) are from a continuous set Ω. This will be the case,

for example, when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued

features, or when the similarity between X and z is the Euclidean distance. Then,

the expectation in (3.15) is a normalized integral over the continuous set of possible

similarity values. Let a and b denote the minimum and maximum possible similarity

values (and hence the lower and upper bound on the expectation’s integral). Then

simplifying (3.15) yields the relationship

eλgmb(λgmb− 1)− eλgma(λgma− 1)

λgm(eλgmb − eλgma)
= t̄gm, (3.18)

where t̄gm = 1
ng

∑
z∈Xg

Tm(z). The solution to (3.18) can be computed numerically.

For the special case a = 0 and b = ∞, the solution is λgm = −1/t̄gm.
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3.3 Relationship of SDA to Other Classifiers

This section examines the relationship of the SDA classifier to standard metric clas-

sifiers. Section 3.3.1 shows that the generative classifier based on arbitrary statis-

tics described in Section 3.2.2 and the naive Bayes classifier in general are different.

However, they are equivalent in the special case of binary feature vectors where the

descriptive statistics are the binary feature themselves. Sections 3.3.2 and 3.3.3 detail

the relationship of SDA to QDA and LDA for a two-class problem where the metric

features are the similarities to the centroids of the classes. The log-linear SDA dis-

criminant is shown to have the same formal expression as the discriminants produced

by QDA and LDA, although SDA is more general in that it can seamlessly accommo-

date discrete or continuous similarities without relying on the assumption that the

class models be bivariate Gaussians. Section 3.3.4 compares SDA to the general case

in which the metric features are the similarities of a test sample to all the training

samples. As a particular case of using similarities as metric features, Section 3.3.5

compares SDA to SVMs with inner product kernels and with the similarities to the

class centroids as the metric features. Section 3.3.6 examines SDA and PSVMs, where

the PSVM kernel consists of the similarities of the training points to the class cen-

troids, and shows that the two classifiers are fundamentally different. Finally, Section

3.3.7 summarizes the difference between SDA and the other classifiers by examin-

ing the decision boundaries produced by the various methods for a simulated binary

classification problem.

3.3.1 Relationship of SDA to Naive Bayes

This section shows that for the specific case of binary feature vectors, classifying with

the naive Bayes classifier is equivalent to classifying with SDA using the features as

the descriptive statistics. However, if the features take on more than two possible

values, SDA and naive Bayes are not equivalent.
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The fundamental assumption of the naive Bayes classifier is that the features are

assumed independent. Thus, the class-conditional probability model for a test sample

x is the product of the marginal pmfs of the features:

P (X = x|Y ) =
N∏

i=1

P (X[i] = x[i]|Y ), (3.19)

where N is the number of features. The marginal pmfs are estimated from training

data, for example using frequency counts. For the case of continuous data, one often

assumes Gaussian marginals and estimates the means and standard deviations from

training data.

To investigate the relationship between SDA and naive Bayes, consider the case

that each sample is described by a set of binary features, that is, the sample space

B = {0, 1}N for some finite value of N . Given z ∈ B, let the ith feature be de-

noted z[i] ∈ {0, 1}. Consider the SDA classifier using descriptive statistics T (x) =

{x[1], x[2], . . . , x[N ]}. In this case, there are N marginal class-conditional distribu-

tions to estimate for each class, as per (3.16). For each marginal distribution there

are two unknowns, P (x[i] = 0|Y = g) and P (x[i] = 1|Y = g), and two constraints:

the normalization constraint and the expectation constraint given in (3.15):

P (x[i] = 0|g) + P (x[i] = 1|g) = 1

0× P (x[i] = 0|g) + 1× P (x[i] = 1|g) =
1

ng

∑
z∈Xg

Iz[i]=1,

where I is the indicator function. These are the same constraints as for naive Bayes.

There is only one possible solution for the class-conditional distributions given these

constraints. Thus, for binary features and T (x) = {x[1], x[2], . . . , x[N ]}, SDA and

naive Bayes are equivalent. However, in general SDA and naive Bayes are not equiv-

alent. If any x[i] can take on more than two possible values, then naive Bayes differs

from SDA: naive Bayes estimates the probability of each of the possible values of each

x[i], whereas SDA will estimate an exponential pmf over the possible values of x[i]

based on the empirical mean of the ith feature for the training samples of each class.
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3.3.2 Relationship of SDA to QDA

QDA is a generative classifier that models each class by a Gaussian class-conditional

distribution in a d-dimensional Euclidean feature space [27]. In standard QDA a mean

û ∈ Rd and covariance matrix Σ̂ ∈ Rd × Rd are estimated from the training samples

for each class, often using maximum likelihood (ML). The class prior P (Y = g) may

be either known or estimated, also with ML. The discriminant function DQDA,g(x)

for the gth class is the logarithm of the Gaussian class-conditional distribution with

the class prior term added:

DQDA,g(x) = −1

2
(x− ûg)

T Σ̂−1
g (x− ûg) + ûT

g Σ−1
g x− 1

2
log |Σ̂g|+ log P (Y = g). (3.20)

A test point x ∈ Rd is classified by determining which class-conditional Gaussian

distribution is most likely to have generated the test point. The classification rule is

written in terms of DQDA,g as

ŷ = arg max
g

DQDA,g(x), (3.21)

where for simplicity (0, 1) misclassification costs are assumed.

QDA has a dual nature. It is both a Gaussian random vector model on continu-

ous features and the maximum entropy distribution subject to constraints on û and

Σ̂ based on the observed data [14]. In this respect, SDA is like QDA, because it too

models a class-conditional generating distribution as the maximum entropy distribu-

tion given moment constraints based on the data. However, SDA is more general

than QDA. A major difference between QDA and SDA is that QDA is rooted in an

Euclidean representation of the feature vectors, and the class-conditional Gaussian

distributions directly model the probability of the test point x. SDA does not rely on

the Euclidean assumption, and the class-conditional exponential distributions model

some set of descriptive statistics T (x). Thus, in QDA the tested quantity is the prob-

ability of the d-dimensional test feature vector x, but in SDA the tested quantity is
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the probability of the descriptive statistics T (x) calculated as functions of the test

sample x ∈ B.

Another major difference between QDA and SDA arises when the Euclidean fea-

tures are not Gaussian (e. g. they may be discrete or continuous and finite). In this

case the QDA assumption that the class-conditional models be Gaussian is incorrect.

One may still use (3.20) to model the gth class discriminant and estimate ûg and Σ̂g

from the data, but the model will be inherently biased. To avoid this problem, one

could instead appeal to the dual nature of QDA, and estimate the class-conditional

model as the maximum entropy distribution subject to second order constraints. How-

ever, this approach still results in a Gaussian class-conditional model which is only an

approximation of the true underlying generative distribution; as such, bias is still a

problem. Thus, QDA is limited to class-conditional models for which the Gaussian as-

sumption is a good approximation for the underlying distribution. On the other hand,

SDA can seamlessly model both discrete and continuous variables. The exponential

class-conditional probability models produced by SDA are applicable to continuous

or discrete descriptive statistics of any order. In this respect, SDA represents a flex-

ible, more general family of classifiers than QDA. The diagram in Figure 3.3.2 is a

simple taxonomy of various generative classifiers based on maximum entropy prob-

ability function estimates. SDA is applicable in all situations, whereas other known

techniques are limited to specific cases.

One may more closely explore the relationship between QDA and SDA by consider-

ing the feature vector u to be a set of descriptive statistics for test sample x. Consider

applying QDA to a two-class problem, where the two-dimensional Euclidean feature

vector consists of the similarities of the sample x to the class centroids µ1 and µ2:

u
.
= [s(x, µ1) s(x, µ2)]

T , (3.22)

where s(x, µ1), s(x, µ2) ∈ R. The class-conditional mean û1 and covariance matrix Σ̂1

are estimated from a training set of feature vectors {zi} using ML estimation. For
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Figure 3.2: Relationship between class-conditional models that maximize entropy, for
continuous and discrete constrained statistics of various orders.

the gth class

ûg =
[
ûg1 ûg2

]T

=
1

ng

∑
zi∈Xg

[s(zi, µ1) s(zi, µ2)]
T , (3.23)

Σ̂−1
g =


a c

c b


 =

[
1

ng−1

∑
zi∈Xg

(zi − ûg)(zi − ûg)
T

]−1

, (3.24)

where ng = |Xg|. Then, the quadratic discriminant in (3.20) can be rewritten as

−1

2

[
s(x, µ1) s(x, µ2)

]

a c

c b





s(x, µ1)

s(x, µ2)


 +

[
ûg1 ûg2

]

a c

c b





s(x, µ1)

s(x, µ2)


 + ug0,

where the term

ug0 = −1

2

[
ûg1 ûg2

]

a c

c b





ûg1

ûg2


 +

1

2
log(ab− c2) + log P (Y = g)

encompasses the class prior and the terms that do not depend on the feature vec-

tor u. Carrying out the matrix multiplications and grouping the terms yields the

discriminant expression

DQDA,g(x) = (aûg1 + cûg2)s(x, µ1) + (cûg1 + bûg2)s(x, µ2)

−cs(x, µ1)s(x, µ2)− 1

2
as2(x, µ1)− 1

2
bs2(x, µ2) + ug0. (3.25)
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DQDA,g(x) can be expressed in the same form as the log-linear SDA discriminant.

Recall the expression (3.17) for the general SDA classifier based on descriptive statis-

tics T (x) and assume (0, 1) misclassification costs; taking the logarithm gives the

expression for the SDA discriminant for class g:

DSDA,g(x) =

(
M∑

m=1

λgmTm(x)

)
+

(
M∑

m=1

log γ1m

)
+ log P (Y = g). (3.26)

Inspection of (3.25) and (3.26) reveals that both DQDA,g and DSDA,g are linear combi-

nations of the descriptive statistics T (x) = {T1(x), T2(x), T3(x), T4(x), T5(x)}. In fact,

they are formally the same, as can be seen by making the following term assignments:

T1(x), ↔ s(x, µ1)

T2(x) ↔ s(x, µ2)

T3(x) ↔ s(x, µ1)s(x, µ2) (3.27)

T4(x) ↔ s2(x, µ1)

T5(x) ↔ s2(x, µ2)

and

λg1 ↔ (aûg1 + cûg2)

λg2 ↔ (cûg1 + bûg2)

λg3 ↔ −c (3.28)

λg4 ↔ −1

2
a

λg5 ↔ −1

2
b

ug0 ↔ (
5∑

m=1

log γgm) + log P (Y = g).

Thus, the same two-class classification problem may be approached with QDA, using

two-dimensional feature vectors u = [T1(x) T2(x)]T , or with SDA, using the five de-

scriptive statistics comprising the QDA features augmented with the quadratic terms

{T3(x), T4(x), T5(x)}.
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This result has a well-established counterpart in metric learning. It is known

that the quadratic decision boundaries arising from the bivariate Gaussian class-

conditional assumption may be fitted with quadratic discriminants acting on the

metric features x[1], x[2] (QDA), or with linear discriminants acting on the enlarged

feature set x[1], x[2], x[1]x[2], x2[1], x2[2] (LDA) [27]. Effectively, LDA estimates

linear decision boundaries in the augmented feature space; these linear boundaries

approximate the quadratic boundaries in the original two-dimensional feature space.

In this respect, the relationship between QDA and SDA in similarity features space is

analogous to the relationship between QDA and LDA in metric feature space. How-

ever, the different approaches to parameter estimation taken by QDA and SDA lead

to different numerical estimates for the parameters, so the class boundaries estimated

by the two techniques will be different. Therefore, one should not misunderstand the

parameter correspondences (3.28) as numerical equalities.

Generally, linear decision boundaries can be estimated with lower variance than

more complex decision boundaries, at the cost of increased bias. In metric space,

the flexibility in choosing QDA or LDA affords the practitioner a trade-off between

bias and variance [27]. Both QDA and LDA rely on the assumption that the sample

features are jointly Gaussian random variables; given this assumption, choosing be-

tween QDA and LDA is merely a matter of matching model complexity to the bias

and variance requirements of the particular problem being solved. However, in simi-

larity space, choosing between QDA and SDA is not as straightforward as selecting

between QDA and LDA in metric space. While in metric learning QDA and LDA

may be viewed as equivalent (albeit in different feature spaces), in similarity-based

learning QDA and SDA are complementary. The nature of the available data is an

important consideration when choosing QDA or SDA as the most appropriate ap-

proach. This underscores the value of developing similarity-based techniques that do

not rely on metric assumptions and Euclidean feature spaces: SDA creates a new set

of possible classifiers for similarity-based learning.



39

3.3.3 Relationship of SDA to LDA

LDA is equivalent to QDA when all classes have the same estimated covariance matrix

Σ̂. In this case the quadratic terms are the same for all class discriminants, so they

can be ignored. The expression for the linear discriminant for class g becomes:

DLDA,g(x) = ûT
g Σ̂−1x− 1

2
ûT

g Σ̂−1û−T
g + log P (Y = g). (3.29)

Applying this expression to the analysis of feature vectors u = [T1(x) T2(x)]T from

Section 3.3.2, the LDA discriminant function DLDA,g can be written directly from

(3.25), ignoring the quadratic terms:

DLDA,g(x) = (aûg1 + cûg2)s(x, µ1) + (cûg1 + bûg2)s(x, µ2) + ug0, (3.30)

where

ug0 = −1

2

[
ûg1 ûg2

]

a c

c b





ûg1

ûg2


 + log P (Y = g).

The same arguments from Section 3.3.2 apply here, and LDA is related to SDA by

the following parameter correspondences:

T1(x) ↔ s(x, µ1)

T2(x) ↔ s(x, µ2)

and

λg1 ↔ (aûg1 + cûg2)

λg2 ↔ (cûg1 + bûg2)

ug0 ↔
(

2∑
m=1

log γgm

)
+ log P (Y = g).

As for the SDA-QDA relationship, the correspondence between the parameters is not

a numeric equality, but a formal assignment.
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3.3.4 Relationship of SDA to Discriminant Analysis on Similarity Features

The previous sections explored the relationship between SDA and quadratic and lin-

ear discriminant analysis for a two-class problem in which the two-dimensional feature

vector consists of the similarities of the test sample x to the class centroids µ1 and

µ2. More generally, similarity-based classification problems can be turned into stan-

dard Euclidean-based learning problems by taking the N × 1 vector of similarities

between a test sample and the N training samples, and using it as an N -dimensional

Euclidean feature vector [17, 21, 54]. This approach turns the similarity-based classi-

fication into a standard metric statistical learning problem with N training samples

in an N -dimensional feature space, with the concomitant curse of dimensionality

difficulties [27]. Duin et al. proposed dealing with the resulting curse of dimen-

sionality problem by using a regularized linear discriminant analysis classifier on the

n-dimensional feature space [17, 54]. Refer to this method as discriminant analysis

on similarity features. Their results show that, on average over their different exper-

iments, linear classifiers built on the similarity vectors achieve similar errors as the

1-nearest neighbor similarity-based classifier, except in cases of severe noise, where

the 1-nearest neighbor has high error.

This section further analyzes discriminant analysis on similarity features, and com-

pares it with SDA by building on the previous two-class case. In [54], the problem is

formulated in terms of dissimilarities. Here, it is formulated in terms of similarities, as

the results do not depend on the chosen similarity measure. The descriptive statistics

are the set of similarities s(x, zi), where s is a function B × B → Ω, Ω ⊂ R. The

feature vector is

u
.
= [s(x, z1)s(x, z2) . . . s(x, zN)]T , (3.31)

where zi is a training sample and x the test sample.

Discriminant analysis on similarity features classifies a test sample based on the

discriminant (3.29), where the ith component of the mean vector for the gth class is
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estimated by ML

ûg[i] =
1

ng

∑
xj∈Xg

s(xj, zi) (3.32)

and the pooled covariance matrix is estimated as

Σ̂ =
1

(N − 2)

2∑
g=1

∑
xj∈Xg

(uj − ûg)(uj − ûg)
T . (3.33)

If there are N training samples, then there are N × N parameters to estimate

for Σ̂, which is generally ill-posed. Duin et al. suggest regularizing Σ̂ by forming

a convex combination between the empirical within-class pooled covariance and the

identity matrix. To simplify the present analytic comparison, suppose that the true

pooled covariance is the identity matrix I, and optimistically suppose that the pooled

covariance is estimated perfectly, so that Σ̂ = I. Then the classification rule becomes:

classify as class one if DLDA,1 > DLDA,2, that is, if

ûT
1 u− 1

2
ûT

1 û1 > û2 − 1

2
ûT

2 û2. (3.34)

This decision rule is based on whether the feature vector of dissimilarities u is better

correlated with û1, the vector of mean distances to each training sample from class

one training samples, or better correlated to û2, the vector of mean distances to each

training sample from class two training samples, where these correlations are offset

by the self-correlations of û1 and û2.

Consider now applying SDA using the descriptive statistics vector u. Then the

log-linear SDA decision rule becomes: classify as class one if

n∑
i=1

(log(γ1i) + s(x, zi)λ1i) >

n∑
i=1

(log(γ2i) + s(x, zi)λ2i), (3.35)

or equivalently, where λ1 is a vector with ith component λ1i,

(
n∑

i=1

log(γ1i)

)
+ uT λ1 >

(
n∑

i=1

log(γ2i)

)
+ uT λ2. (3.36)
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Thus, using the dissimilarities u as descriptive statistics, the SDA rule given in (3.36)

and the discriminant analysis on similarity features rule (3.34) (assuming the esti-

mated covariance was the identity matrix) have the same form. The constants in

both rules are due to the normalization of the underlying probability model. How-

ever, in (3.34) the tested correlations are between the test feature vector given in

(3.31) and each class mean û, whereas in (3.36) the tested correlations are between

the test feature vector u and the parameter vector λ.

To show how the classifiers differ, consider a concrete example which compares

the discriminant analysis on similarity features rule given in (3.34) to the SDA rule

using the similarity-to-the-training-samples as descriptive statistics (3.36), and to

SDA using the centroid descriptive statistics set T (x) = {s(x, µ1), s(x, µ2)} where the

centroids µ1, µ2 are defined in (2.10).

Consider two classes whose elements are generated as additive noise on a proto-

typical set of three features, where the class one prototype is [0 0 0] and the class two

prototype is [1 1 1]. Illustrative training samples were then chosen:

Class 1 training samples: [0 0 0], [0 0 1], [1 0 0], [0 1 0], [1 1 0]

Class 2 training samples: [1 1 1], [1 0 1], [1 1 0], [0 1 1], [0 0 1]

The dissimilarity metric used is Hamming distance (the number of features that dif-

fer), and all eight possible feature combinations were considered as test samples. The

classifiers differ in their classification of [0 0 1] and [1 1 0], which appear as training

samples in both classes. The discriminant analysis on similarity features as defined

in (3.34), classifies [0 0 1] as class 2 and [1 1 0] as class 1, which are incorrect given

the underlying model. The proposed SDA with (3.9) and (2.10) correctly classifies

all test samples. SDA with the decision rule (3.36) incorrectly classifies [0 0 1] as

class 2, but correctly classifies [1 1 0] as class 2. Over a number of similar focused

simulations with simple unimodal models for each class, SDA with centroid-based

similarities performed better than the SDA decision rule (3.36) or the discriminant

analysis on similarity features (3.34).
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3.3.5 Relationship of SDA to Support Vectors of Similarity Features

Section 2.2.6 discussed how the matrix of pairwise similarities between training sam-

ples can be used as the kernel in a SVM classifier, K(zi, zj) = s(zi, zj) as long as

s(zi, zj) is symmetric and positive definite. In this case, the SVM classification rule

(2.12) becomes a linear discriminant in similarity feature space. Separate the terms

associated with each of the two classes g = {−1, +1}, and substitute the feature

vector u = [s(z, x1), s(z, x2), . . . s(z, xN)]T of similarities of the test sample x to each

training sample zi for the kernel. The classification rule (2.12) becomes to classify as

the class

ŷ = sign

(
N∑

i=1

α̂iyis(x, zi) + b

)
,

and may be written in terms of linear discriminants for the classes g ∈ {+1,−1},
N∑

i=1

α̂is(x, zi)Iyi=1 + b1 >

N∑
i=1

α̂is(x, zi)Iyi=−1 + b−1

α̂T
g=1ug=1 + b1 > α̂T

g=−1ug=−1 + b−1

DSV M,x(z) > DSV M,−1(x), (3.37)

where b1 − b−1 = b, I is the indicator function, and where the ith elements of vectors

αg, ug and yg are αiIyi=g, s(z, xi)Iyi=g, and Iyi=g respectively. The decision rule (3.37)

is based on whether the feature vector of similarities u is better correlated with α̂g=1,

the vector of SVM coefficients associated with support vectors from class g = 1, or

better correlated with α̂g=−1, the vector of SVM coefficients associated with support

vectors from class g = −1, where these correlations are offset by the contribution of

the coefficients bg associated with each class.

Expression (3.37) is analogous to expression (3.34). Thus, using the matrix of

pairwise similarities as the SVM kernel is simply a case of discriminant analysis on

similarity features, discussed in Section 3.3.4. However, the correlations in (3.37) are

computed from the similarities of a test sample to the training samples associated
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with one of the classes, whereas the correlations in (3.34) are computed from the

similarities to the training samples in both classes.

Applying SDA to this problem leads to expression (3.36), and the observations

of Section 3.3.4 apply here. To further explore the relationship between SVMs and

SDA, consider the same two-class problem described in Section 3.3.2, where a sample

is characterized by a feature vector of similarities to the two class centroids (3.22),

and where the class labels are y = {−1, +1}. SVMs can be constructed from this

description of the samples. In particular, consider the linear kernel (2.14) of Section

2.2.6 with a quadratic exponent q = 2. The SVM classification rule (2.12) for a

test sample v = [s(x, µ1) s(x, µ2)]
T given N training samples ui = [s(zi, µ1) s(zi, µ2)]

T

becomes

ŷ = sign

(
N∑

i=1

α̂iyi[〈v, ui〉+ 1]2 + b

)

= sign

(
N∑

i=1

α̂iIyi=1[〈v, ui〉+ 1]2 −
N∑

i=1

α̂iIy1=−1[〈v, ui〉+ 1]2 + b

)
. (3.38)

Expand the kernel expression and rewrite the term associated with class label y = g:

DSV M,g(x) =

(
2

N∑
i=1

α̂iIyi=gs(zi, µ1)

)
s(x, µ1)

+

(
2

N∑
i=1

α̂iIyi=gs(zi, µ2)

)
s(x, µ2)

+

(
N∑

i=1

α̂iIyi=gs(zi, µ1)s(zi, µ2)

)
s(x, µ1)s(x, µ2)

+

(
N∑

i=1

α̂iIyi=gs(zi, µ1)

)
s2(x, µ1)

+

(
N∑

i=1

α̂iIyi=gs(zi, µ2)

)
s2(x, µ2)

+ bg. (3.39)

Following the same argument of Sections 3.3.2 and 3.3.3, (3.39) may be expressed in

the same form as the log-linear SDA discriminant by relating the similarities to the
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descriptive statistics as in (3.27), and by making the formal assignments

λg1 ↔ 2
N∑

i=1

α̂iIyi=gs(zi, µ1)

λg2 ↔ 2
N∑

i=1

α̂iIyi=gs(zi, µ2)

λg3 ↔
N∑

i=1

α̂iIyi=gs(zi, µ1)s(zi, µ2) (3.40)

λg4 ↔
N∑

i=1

α̂iIyi=gs(zi, µ1)

λg5 ↔
N∑

i=1

α̂iIyi=gs(zi, µ2)

ug0 ↔ bg.

Thus, the linear SVM kernel generates a linear discriminant expression, much like

the expressions for QDA (3.25), LDA (3.30) and SDA (3.26). However, in general

the SVM hyperplane coefficients α̂ computed by solving (2.13) will produce different

discriminant boundaries than those produced by the other methods.

3.3.6 Relationship of SDA to PSVM

The PSVM classifier can accept any matrix as the kernel K. Thus, any pairwise

similarity matrix, even non-symmetric or non-positive definite, may be used for K.

Given K(zi, zj) = s(zi, zj), the approach of Section 3.3.5 leads to the same linear

discriminant on similarity features (3.37) result for PSVM.

Next, consider a different set of statistics for the two-class case where the kernel

is a N × 2 matrix of similarities of the N training samples zi to the class centroids µ1

and µ2. The ith row of K is the vector ui = [s(zi, µ1) s(zi, µ2)]
T and a test sample x

is described by the vector v = [s(x, µ1) s(x, µ2)]
T . Following the approach in Section

3.3.5 one may write the PSVM discriminant for class g from the PSVM classification
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rule (2.15),

DPSV M,g(x) = α̂gs(x, µg) + bg, (3.41)

where bg = 1
N

∑N
i=1 yiIyi=g.

A correspondence between SDA and PSVM analogous to the correspondences

between SDA, QDA, LDA and SVM cannot be made in this case. The value of the

class g PSVM linear discriminant for a test point x is simply the similarity of x to

the class centroid µg, scaled by the factor α̂ and offset by the fraction of training

samples from class g. Unlike SDA, QDA, LDA, and SVMs, here the discriminant

for class g depends only on the similarity to the class g centroid. For the other

classifiers the discriminant for class g depends also on the similarities to the centroids

of the classes other than g. In this sense, for this case, the PSVM is more like a scaled

nearest-centroid (most-similar centroid) classifier than a discriminant-based classifier.

In spite of this difference, the PSVM classifier can estimate classification boundaries

very close to the boundaries produced by QDA, LDA, and SVM, as discussed in the

following section.

3.3.7 Comparison of Discriminants for Different Classifiers

Sections 3.3.1-3.3.6 described the relationship between the SDA and metric classifiers.

In particular, it was shown that when the sample features are the similarities of the

samples to the centroids of each class, the expressions for the discriminants produced

by QDA, LDA, and SVM are formally the same as the log-linear SDA discriminant.

The discriminants for these classifiers may be written as linear combinations of similar-

ity features, but in general the linear combination coefficients differ from one classifier

to the other, because each classifier estimates the coefficients differently. The PSVM

was shown to produce different discriminant expressions, more like weighted nearest

centroid similarity than the log-linear SDA discriminants. This section examines the

classification boundaries produced by various classifiers by building on the examples
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in the previous sections, in which the feature vectors consist of the sample similarities

to the class centroids, u = [s(x, µ1) s(x, µ2)]. In this example, LDA and QDA do not

apply because the class-dependent covariance matrices are singular. SVM, PSVM,

naive Bayes, and SDA produce class boundaries very close to each other.

Each feature vector u is formed as the similarity between a random binary vector

and two fixed binary vectors, which are the class centroids. For this example, class one

is characterized by the centroid µ1 = [0 0 0] and class two by centroid µ2 = [1 1 1]. The

class one samples are perturbations of µ1, where each element is perturbed (flipped)

with probability p1 = 1/3; for class two the probability that each element of µ2 is

flipped is p2 = 1/4. The data consist of 1000 binary vector realizations drawn from

each class with prior probability P (Y = g) = 1/2, where g = {1, 2}. The similarity

function is the Hamming (or counting) similarity, which is the number of identical

features shared by two vectors. In this example, the similarity takes on the values

{0, 1, 2, 3}.
In this very simple example QDA and LDA cannot be applied because the covari-

ance matrices are singular. The elements of the feature of vector [s(x, µ1) s(x, µ2)]

are linearly dependent such that s(x, µ1) = 3− s(x, µ2), due to the fact that the cen-

troids µ1 and µ2 do not have any element in common. Thus, in spite of the problem’s

simplicity, the standard QDA and LDA techniques are not applicable. SDA, SVM,

PSVM, and naive Bayes, however, may still be applied because their discriminants

do not rely on covariance matrices.

The discriminant parameters for (3.37), (3.41), and (3.26) are estimated from the

data using each classifier’s estimation method: for SVM and PSVM the coefficients α̂

are computed by numerical optimization of the two corresponding objective functions

(3.37) and (3.41); for SDA, λgm and γgm, m = 1, 2, . . . 5 are computed numerically

from the constraints (3.15). For naive Bayes, the class-conditional feature pmfs are

computed using ML estimation. The class boundaries in the dissimilarity feature

space are the curves defined by DSDA,1 =, DSDA,2, DSV M,1 =, DSV M,2, etc. These
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curves are plotted in Figure 3.3. All classifiers produce similar classification bound-

aries and, for this example, produce identical class estimates. The small differences

in the boundaries are due to the different numerical approaches used to estimate the

coefficients of the linear discriminants.
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Figure 3.3: Class boundaries produced by SDA (-), SVM (¤), PSVM (4), and naive
Bayes (o) applied to the similarity.

3.4 Mixed Numerical and Categorical Features

In some applications, samples are characterized by mixed – that is both numerical

and categorical – features. One way to deal with mixed features is to use similarity

functions that can handle both types of features and then use SDA for classification.

Examples of these similarity functions are the heterogeneous VDM [13] and the resid-

ual entropy [10]. Given a similarity measure appropriate for mixed features, any of
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the similarity-based classification methods discussed thus far can be applied.

A different way to deal with mixed features is to build mixed models that com-

bine standard Euclidean feature space-based probability models with similarity-based

models. This alternative method is briefly discussed below, and can be further pur-

sued in future work. Consider the sample x, which is a random realization of the

random sample X composed of random features X[1], X[2], . . . , X[d]. Assume with-

out loss of generality that the first j features of x are categorical, and its last d − j

features are numerical: x is written as the concatenation of a categorical feature vec-

tor and a numeric feature vector, x = [xcat xnum]. Using the chain rule of probability,

the class-conditional probability of sample x may be written as the product of two

terms, one based only on the categorical features and the other based on the numerical

features additionally conditioned on the categorical features:

P (X = x|Y = g) = P (X1,...,j = xcat, Xj+1,...,d = xnum|Y = g) (3.42)

= P (Xj+1,...,d = xnum|X1,...,j = xcat, Y = g)P (X1,...,d = xcat|Y = g).

The class-conditional and categorical feature-conditional term P (Xj+1,...,d = xnum|X1,...,j =

xcat, Y = g) for the numerical features may be estimated using any known probabil-

ity model estimation technique. For example, Gaussian models can be used [67].

The categorical class-conditional probability may also be estimated with known tech-

niques. For example, a multinomial naive Bayes model can be easily estimated. Or,

SDA could be used to model the class-conditional probabilities with similarity-based

techniques. The same reasoning of Section 3.1 allows using the descriptive statistics

T (xcat) instead of the categorical features, so that the test sample x = [T (xcat) xnum]

and one substitutes P (T (xcat)|Y = g) for P (xcat|Y = g). More specifically, one could

use a relevant similarity function to measure the pairwise similarities between samples

based only on the xcat features, and analogously compute the class centroids µh based

on xcat. Applying Bayes rule to (3.42) the mixed Euclidean- and similarity-based
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classifier rule is: classify x as the class ŷ which maximizes the expression

arg max
f=1,...,G

G∑
g=1

C(f, g)P̂ (g)P̂ (Xj+1,...,d = xnum|T (xcat) = T1,...,m(xcat), Y = g)×

M∏
m=1

γgmeλgmTm(xcat).(3.43)

A potential problem with (3.43) is the rapid growth of the number of conditional

probability models that must be estimated to model the continuous features given

different conditions of class and categorical features. If the ith categorical feature

takes on ci values, then the number of models to estimate is
∏

i ci × G, which can

grow rapidly. When this happens, one may be left with too few samples per class to

accurately estimate the model parameters.

To simplify the classifier complexity and further reduce the estimation variance

(at some increase in model bias) one could make the additional assumption that the

numerical features and categorical features are class-conditionally independent:

arg max
f=1,...,G

G∑
g=1

C(f, g)P̂ (g)P̂ (Xj+1,...,d = xnum|Y = g)
M∏

m=1

γgmeλgmTm(xcat). (3.44)
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Chapter 4

LOCAL SIMILARITY DISCRIMINANT ANALYSIS

This chapter introduces local SDA, a similarity-based classifier that is both gener-

ative and local. An advantage of generative classifiers is their interpretability: classes

are modeled by conditional probability distributions which are assumed to have gen-

erated the observed data. An advantage of local classifiers it that they reduce the

estimation bias problem which affects generative classifiers. Local SDA combines the

qualities of both generative and local classifiers.

For the SDA classifier described in Chapter 3, the class-conditional generative dis-

tributions are exponentials which model the similarities between samples – or more

generally the descriptive statistics of the sample. The exponentials are the maximum

entropy distributions subject to constraints on the mean values of the similarities.

However, when the underlying distributions are complex, a particular set of empir-

ical statistics may fail to capture the necessary information about a sample’s class

membership. In fact, in SDA, constraining the means of the class-conditional distri-

butions may result in too much model bias, just as the QDA model of one Gaussian

per class causes model bias [27]. In standard metric learning, one way to address the

bias problem while retaining the advantages of a generative approach is to form more

flexible Gaussian mixture models. In similarity-based learning, mixture models may

also be formed, as discussed in Chapter 5.

This chapter addresses the bias in SDA by using local classifiers in similarity

space. In metric learning, one way to avoid the bias problem is to use local classifiers,

e.g. k-NN, which classify test samples based on the class labels of their nearest

neighbors. Local classifiers do not estimate probabilistic models for the sample classes
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and consequently lack the interpretability of generative models. Even so, they provide

an intuitive framework for classification through the concepts of nearest-neighbor and

neighborhood. In this chapter, SDA is applied to a local neighborhood about the

test sample. The resulting local SDA classifier trades-off model bias and estimation

variance depending on the neighborhood size, while retaining the power of a generative

classifier. To the author’s knowledge, local SDA is the first example of a classifier that

is both generative and local. The only arguable contender is the local nearest-mean

classifier [46, 47] for metric learning; however that classifier was not proposed as a

generative model. In Section 4.1, local SDA is introduced as a straightforward local

version of SDA. In Section 4.2 local SDA is proven to be a consistent classifier, in the

sense that its error rate asymptotically converges to the Bayes error rate, which is the

best possible error rate attainable by a classifier.

4.1 Local SDA

Local SDA is a straightforward variation of SDA. The local SDA classifier model is

that all of the relevant information about classifying a test sample x depends only

on the k nearest (most similar) training samples to x. Thus, the local SDA classi-

fier computes the descriptive statistics from a neighborhood of a test sample. More

specifically, local SDA is a log-linear generative classifier that models the probabil-

ity distribution of the similarity s(x, µh) between the test sample x and the class

centroids {µh}, just like SDA. Unlike SDA, the class centroids, the class-conditional

similarity probability models, and the estimates of the class priors are computed from

a neighborhood of the test sample rather than from the entire training set. Thus, the

class centroid definition (2.10) used for SDA still holds for local SDA; one simply

redefines Xh as the subset of the k nearest neighbors from class h. The class priors

are estimated using normalized class membership counts of the neighbors of x, that

is P̂ (Y = h) = |Xh|/k. The mean similarity constraints (3.4) for the SDA maximum

entropy optimization are formally the same for local SDA, except that the mean is
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computed from the neighbors of test sample x rather than the whole training set.

Thus, the optimized parameters λgh and γgh are local. Given the set of local class

centroids {µh}, the local class priors P̂ (Y = g), and the local class-conditional model

parameters γgh the local SDA classification rule is identical to the SDA rule (3.7):

arg max
f=1,...,G

G∑
g=1

C(f, g)

(
G∏

h=1

γghe
λghs(x,µh)

)
P̂ (Y = g).

A problem can occur if the hth class has few training samples in the neighborhood

of test sample x. In this case, the local SDA model for class h is difficult to estimate.

To avoid this problem, if the number of local training samples in any of the classes is

very small, for example nh < 3, the local SDA classifier reverts to the local nearest

centroid classifier discussed in Section 2.2.3. If nh = 0 so that Xh is the empty set,

then the probability of class h is locally zero, and that class is not considered in the

classification rule (3.7). This strategy enables local SDA to gracefully handle small k

and very small class priors.

Local classification algorithms have traditionally been weighted voting methods,

including classifying with local linear regression, which can be formulated as a weighted

voting method [27]. These methods are by their nature non-parametric and their use

arises in situations when the available training samples are too few to accurately build

class models. On the other hand, it is known that the number of training samples

required by nonparametric classifiers to achieve low error rates grows exponentially

with the number of features [47]. Thus, when only small training sets are available,

nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and

Hamamoto [46,47] were the first ones to propose a classifier that is both model-based

and local. However, they did not develop it as a local generative method; instead,

they proposed the classifier as a local weighted-distance method. Their nearest-means

classifier can be interpreted as a local QDA classifier with identity covariances. In

experiments with simulated and real data sets, the local nearest-means classifier was

competitive with, and often better than, nearest neighbor, the Parzen classifier, and
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an artificial neural network, especially for small training sets and for high dimensional

problems.

Local nearest-means differs from local SDA in several aspects. First, the classifier

by Mitani and Hamamoto in [47] learns a metric problem, not a similarity prob-

lem: the class prototypes are the local class-conditional means of the features and

a weighted Euclidean distance is used to classify a test sample as the class of its

nearest class mean. Second, the neighborhood definition is different than the usual k

nearest neighbors: they select k nearest neighbors from each class, so that the total

neighborhood size is k ×G.

More recently, it was proposed to apply a support vector machine to the k nearest

neighbors of the test sample [80]. The SVM-KNN method was developed to address

the robustness and dimensionality concerns that afflict nearest neighbors and SVMs.

Similarly to the nearest-means classifier, the SVM-KNN is a hybrid local and global

classifier developed to mitigate the high variance typical of nearest neighbor methods

and the curse-of-dimensionality. However, unlike the nearest means classifier of Mitani

and Hamamoto, which is rooted in Euclidean space, the SVM-KNN can be used with

any similarity function, as it assumes that the class information about the samples

is captured by their pairwise similarities without reference to the underlying feature

space. Experiments on benchmark datasets using various similarity functions showed

that SVM-KNN outperforms k-NN and its variants especially for cases with small

training sets and large number of classes. SVM-KNN differs from local SDA because

it is not a generative classifier.

Finally, note that different definitions of neighborhood may be used with local

SDA. One could use the Mitani and Hamamoto [47] definition described above, or

radius-based definitions. For example, the neighborhood of a test sample x may be

defined as all the samples that fall within a factor of 1 + α of its similarity to its

most similar neighbor, and α is cross-validated. This work employs the traditional

definition of neighborhood, as the k nearest neighbors. Results for local SDA are in
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Chapter 6.

4.2 Consistency of the Local SDA Classifier

Generative classifiers with a finite number of model parameters, such as QDA or

SDA, will not asymptotically converge to the Bayes classifier due to the model bias.

This section shows that, like k-NN, the local SDA classifier is consistent such that

its expected classification error E[L] converges to the Bayes error rate L∗ under the

usual asymptotic assumptions that the number of training samples N → ∞, the

neighborhood size k → ∞, but that the neighborhood size grows relatively slowly

such that k/N → 0. First a lemma is proven that will be used in the proof of the

local SDA consistency theorem. Also, the known result that k-NN is a consistent

classifier is reviewed in terms of similarity.

Let the similarity function be s : B × B → Ω, where Ω ⊂ R is discrete and

let the largest element of Ω be termed smax. Let X be a test sample and let the

training samples {X1, X2, . . . , XN} be drawn identically and independently. Re-order

the training samples according to decreasing similarity and label them {Z1, Z2, . . . ZN}
such that Zk is the kth most similar neighbor of X.

Lemma 1. Suppose s(x, Z) = smax if and only if x = Z and P (s(x, Z) = smax) > 0

where Z is a random training sample. Then P (s(x, Zk) = smax) → 1 as k, N → ∞
and k/N → 0.

Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1

in [15]. Note that s(x, Zk) 6= smax if and only if

1

N

N∑
i=1

I{s(x,Zi)=smax} <
k

N
, (4.1)

because if there are less than k training samples whose similarity to x is smax, the

similarity of the kth training sample to x cannot be smax. The left-hand side of (4.1)

converges to P (s(x, Z) = smax) as N →∞ with probability one by the strong law of
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large numbers, and by assumption P (s(x, Z) = smax) > 0. However, the right-hand

side of (4.1) converges to 0 by assumption. Thus, assuming s(x, Zk) 6= smax leads to

a contradiction in the limit. Therefore, it must be that s(x, Zk) = smax.

Theorem 1. Assume the conditions of Lemma 1. Define L to be the probability of er-

ror for test sample X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), . . . , (ZN , YN)},
and let L∗ be the Bayes error. If k, N → ∞ and k/N → 0, then for the local SDA

classifier E[L] → L∗.

Proof: By Lemma 1, s(x, Zi) = smax for i ≤ k in the limit as N →∞, and thus in

the limit the centroid µh of the subset of the k neighbors that are from class h must

satisfy s(x, µh) = smax, for every class h which is represented by at least one sample

in the k neighbors. By definition of the local SDA algorithm, any class h̄ that does

not have at least one sample in the k neighbors is assigned the class prior probability

P (Y = h̄) = 0, so it is effectively eliminated from the possible classification outcomes.

Then, the constraint (3.4) on the expected value of the class-conditional similarity for

every class g that is represented in the k neighbors of x is

EP (s(x,µh)|Y =g)[s(X, µh)] = smax, (4.2)

which is solved by the pmf P (s(x, µh)|Y = g) = 1 if s(x, µh) = smax, and zero

otherwise. Thus the local SDA classifier (3.7) becomes

ŷ = arg max
g=1,...G

P̂ (Y = g), (4.3)

where the estimated probability of each class P̂ (Y = g) is calculated using a maximum

likelihood estimate of the class probabilities for the neighborhood. Then, P̂ (Y = g) →
P (Y = g|x) as k →∞ with probability one by the strong law of large numbers. Thus

the local SDA classifier converges to the Bayes classifier, and the local SDA average

error E[L] → L∗.

The known result that k-NN is a consistent classifier can be stated in terms of

similarity as a direct consequence of Lemma 1:
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Lemma 2. Assume the conditions of Lemma 1 and define L and L∗ as in Theorem

1. For the similarity-based k-NN classifier E[L] → L∗.

Proof. It follows directly from Lemma 1 that within the size-k neighborhood of

x, Zi = x for i ≤ k. Thus, the k-NN classifier (2.6) estimates the most frequent class

among the k samples maximally similar to x:

ŷ = arg max
g=1,...,G

k∑
i=1

I(Yi = g)

= P̂ (Y = g).

The summation converges to the class prior P (Y = g|x) as k → ∞ with probability

one by the strong law of large numbers, and the k-NN classifier becomes that in (4.3).

Thus the similarity-based k-NN classifier is consistent.



58

Chapter 5

MIXTURE MODELS FOR SIMILARITY DISCRIMINANT
ANALYSIS

This chapter discusses generative mixture models for similarity-based learning.

The mixture similarity discriminant analysis (mixture SDA) classifier draws from the

well-established metric learning mixture model research and generalizes the SDA clas-

sifier of Chapter 3. Section 5.1 reviews mixture models from metric learning, focusing

on the popular Gaussian mixture models (GMMs). The steps in the well-known

expectation-maximization (EM) algorithm for estimating GMM parameters are also

reviewed. Section 5.2 introduces SDA mixture models as similarity-based analogs of

GMMs which generalize SDA. Section 5.3 discusses how mixture SDA parameters are

learned using an EM algorithm which parallels the standard EM approach for GMM

parameter estimation.

5.1 Review of Mixture Models for Classification in Metric Spaces

In metric learning, mixture models for class-conditional distributions are a robust but

flexible generative approach to classification [27]. The probability of a test sample x

conditioned on its class label Y = h is modeled as a weighted sum of ch probability

components Pl(X = x|Y = h):

P (X = x|Y = h) =

ch∑

l=1

whlPl(X = x|Y = h), (5.1)

where
∑ch

l=1 whl = 1, and whl > 0. The classification rule is to classify as

ŷ = arg max
f=1...G

G∑

h=1

C(f, h)P (X = x|Y = h), (5.2)
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where G is the number of possible classes.

Typically, the shape of each component Pl(X = x|Y = h) is assumed a priori.

Gaussian mixture models (GMMs) assume that each mixture component Pl(X =

x|Y = h) = N (uhl, Σhl), where N (uhl, Σhl) is a Gaussian probability distribution with

mean uhl and covariance Σhl. For each class h, the mixture parameters {whl}, {uhl},
and {Σhl} are estimated from training data. For GMMs, the standard estimation

method is the well-known expectation-maximization (EM) algorithm [6,16,27], which

leads to maximum-likelihood (ML) estimates for the parameters. EM iteratively

maximizes the expected log-likelihood of the training data, given current estimates

of the desired model parameters. During each iteration, EM executes two steps:

the expectation (E) step and the maximization (M) step. The E step computes the

responsibilities for each sample, that is the contribution of each Gaussian component

to the sample’s total posterior probability given by the mixture (5.1). The M step

finds new values of the desired parameters which maximize the expected log-likelihood

of the data. The new values are computed by taking the partial derivatives of the

expected log-likelihood with respect to the parameters and setting them to zero.

These new parameter estimates are used in the E step at the next iteration of the

EM algorithm.

For GMMs, the EM algorithm gives explicit expressions for updating the com-

ponent weights, means and covariances [27]. Denote by C a random component of

the Gaussian mixture and by P (C = l|X = zi, Y = h) the responsibility of the lth

Gaussian component of class h for the training sample zi ∈ Xh, i = 1, 2 . . . nh. The

EM algorithm for GMMs is:

1. Initialize the parameters {whl}, {uhl}, and {Σhl}.

2. E step: compute the responsibilities

P (C = l|X = zi, Y = h) =
whlPl(X = zi|Y = h)∑ch

l=1 whlPl(X = zi|Y = h)
. (5.3)
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3. M step: compute model parameters

uhl =

∑nh

i=1 P (C = l|X = zi, Y = h)zi∑N
i=1 P (C = l|X = zi, Y = h)

, (5.4)

Σhl =

∑N
i=1 P (C = l|X = zi, Y = h)(zi − uhl)(zi − uhl)

T

∑nh

i=1 P (C = l|X = zi, Y = h)
, (5.5)

whl =

∑nh

i=1 P (C = l|X = zi, Y = h)

nh

. (5.6)

4. Iterate E and M steps until convergence criterion is satisfied.

The parameters may be initialized in several ways. A common initialization ran-

domly assigns one of ch training samples zi ∈ Xh to each component mean vector uhl,

sets all the component covariance matrices Σhl equal to the overall within-class sam-

ple covariance Σh, and uniformly initializes the component weights whl = 1/ch [27].

Another common strategy is to run the K-means algorithm to find the initial values

of the parameters. The component means are assigned to the K-means centroids,

each component covariance matrix is set to the sample covariances of each K-means

cluster, and the component weights are initialized to the fractions of training samples

in each cluster [36].

The number of components ch in each mixture may be optimized using penalized

likelihood methods such as the Bayesian information criterion (BIC) [11, 27, 63], the

minimum description length (MDL) [14,44], or the Akaike information criterion (AIC)

[1]. Often, in practice the number of components is cross-validated by independently

training several class-conditional models with different number of components and

selecting the set of number of components {ch} for h = 1, . . . , G which gives the best

classification performance.

The EM algorithm for mixture SDA closely parallels the EM algorithm for GMMs

reviewed above. In particular, the expression for the component weights of an SDA

mixture model is identical to (5.6); the other mixture SDA parameters are computed

by solving a constrained optimization problem, where the constraints are empirical
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weighted averages of observed similarities. The mixture SDA parameter estimation

procedure is discussed in detail in Section 5.3.

GMMs have been successful in a variety of different statistical learning applica-

tions [27]. In the area of speaker identification Gaussian mixtures have been suc-

cessfully applied to model each speaker’s vocal features [58]. More recently, GMMs

have been applied to the problem of classifying computational predictions of three-

dimensional protein structures according to how likely it is that the modeled structure

might appear in nature [11]. Genomic data, such as microarray gene expression data,

can also be succesfully analyzed with GMMs [69]. In the area of image processing,

GMMs have successfully been employed to segment aerial images [56] and to clas-

sify small objects [7]. GMMs have found such broad applicability because they form

smooth approximations of arbitrary distributions by weighted sums of Gaussian func-

tions. Thus, they are well suited to model non-trivial feature spaces which exhibit

multi-modal distributions, such as the feature spaces which arise in many real-world

applications. For such multi-modal cases, modeling a class distribution with a sin-

gle Gaussian component, for example using LDA or QDA, produces class-conditional

models that are too biased for useful classification.

5.2 Mixture SDA

Like LDA and QDA, basic SDA may be too biased if the similarity space – or more

generally the descriptive statistics space – is multi-modal. In analogy to metric space

mixture models, the bias problem in similarity space may be alleviated by generalizing

the SDA formulation of Chapter 3 with similarity-based mixture models. In the

mixture SDA models, the class-conditional probability distribution of the descriptive

statistics T (x) for a test sample x is modeled as a weighted sum of exponential

components. Generalizing the single centroid-based SDA classifier of Section 3.1,

and drawing from the metric mixture models reviewed in Section 5.1, each class h is

characterized by ch centroids {µhl}. The descriptive statistics for test sample x are
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its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), . . . , s(x, µhch
)}, for each

class h. The mixture SDA model for the probability of the similarities, assuming that

test sample x is drawn from class g, is written as

P (s(x, µh1), s(x, µh2), . . . , s(x, µhch
)|Y = g) =

ch∑

l=1

wghlγghle
λghls(x,µhl), (5.7)

where
∑ch

l=1 wghl = 1 and wghl > 0. Then, the SDA classification rule (3.7) for mixture

SDA becomes to classify x as the class ŷ that solves the maximum a posteriori problem

arg max
f=1,...,G

G∑
g=1

C(f, g)

(
G∏

h=1

ch∑

l=1

wghlγghle
λghls(x,µhl)

)
P (Y = g). (5.8)

Note how the mixture SDA generative model (5.7) parallels the metric mixture

formulation (5.1), with the exponentials γghle
λghls(x,µhl) in place of Pl(x|y). However,

there are deep differences between mixture SDA and metric mixture models. In metric

learning, the mixtures model the underlying generative probability distributions of the

features. Due to the curse of dimensionality, high-dimensional, multi-modal feature

spaces require many training samples for robust model parameter estimation. For

example, for d features, GMMs require that a d×1 mean vector and a d×d covariance

matrix be estimated for each component in each class, for a total of ch × (d2 + 3d)/2

parameters per mixture. Constraining each Gaussian covariance to be diagonal, at the

cost of an increased number of mixture components, alleviates the robust estimation

problem, but does not solve it [58].

When relatively few training samples are available, robust parameter estimation

becomes particularly difficult. In similarity-based learning the modeled quantity is

the similarity of a sample to a class centroid. The estimation problem is essentially

univariate and reduces to estimating the exponent λghl in each component of the

mixture, for a total of ch × G × 2 parameters per mixture (the scaling parameter

γghl follows trivially). This simpler classifier architecture allows robust parameter

estimation from smaller training set depending on the number of centroids per class,

or, more generally, the number of descriptive statistics.
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Another major difference between mixture SDA and metric mixture models is in

the number of class-conditional probability models that must be estimated. In metric

learning, G mixtures are estimated, one for each of the G possible classes from which

a sample x may be drawn. In mixture SDA, G2 mixture models are estimated. Each

sample x is hypothesized drawn from class g = 1, 2, . . . G, and its similarities to each

of the G classes are modeled by the mixture (5.7), with h = 1, 2, . . . G. When the

number of classes grows, or when the number of components in each mixture model

grows, the quadratic growth in the number of needed models presents a challenge

in robust parameter estimation, especially when the number of available training

samples is relatively small. However, this problem is mitigated by the fact that the

component SDA parameters may be robustly estimated with smaller training sets than

in metric mixture models due to the simpler, univariate estimation problem at the

heart of SDA classification. The next section discusses the mixture SDA parameter

estimation procedure.

5.3 Estimating the Parameters for Mixture SDA Models

Computing the SDA mixture model for the similarities of samples x ∈ Xg to class

h requires estimating the number of components ch, the component centroids {µhl},
the component weights {wghl} and the component SDA parameters {λghl} and {γghl}.
This section describes an EM algorithm for estimating these mixture parameters. The

algorithm parallels the EM approach for estimating GMM parameters described in

Section 5.1; it is first summarized below, and then explained in detail in the following

sections.

Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 . . . ch be the set of parameters for

the class h mixture model to be estimated under the assumption that the training

samples zi, for i = 1, 2, . . . ng are drawn identically and independently. Denote by C

a random component of the mixture and by P (C = l|s(zi, µhl), θgh) the responsibility

[27] of the lth component for the ith training sample similarity s(zi, µhl). Also write
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P (s(zi, µhl)|C = l, θgh) = γghle
λghls(zi,µhl). The proposed EM algorithm for mixture

SDA is

1. Compute the centroids {µhl} with K-medoids algorithm.

2. Initialize the parameters {wghl} and the components P (s(zi, µhl)|C = l, θgh).

3. E step: compute the responsibilities

P (C = l|s(zi, µhl), θgh) =
wghlP (s(zi, µhl)|C = l, θgh)∑ch

l=1 wghlP (s(zi, µhl)|C = l, θgh)
. (5.9)

4. M step: compute model parameters

(a) Find the λghl which solves

EP (T (x)|Y =g)[s(X,µhl)] =

∑ng

i=1 s(zi, µhl)P (C = l|s(zi, µhl), θgh)∑ng

i=1 P (C = l|s(zi, µhl), θgh)
. (5.10)

(b) Compute the corresponding scaling factor

γghl =
1∑

s(X,µhl)∈Ω

eλghls(X,µhl)
. (5.11)

(c) Compute the component weights

wghl =
1

ng

ng∑
i=1

P (C = l|s(zi, µhl), θgh). (5.12)

5. Repeat E and M steps until convergence criterion is satisfied.

Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves

iterating the E step, which estimates the responsibilities, and the M step, which

estimates the parameters that maximize the expected log-likelihood of the training

data. At each iteration of the M step, the explicit expression (5.12) updates the

component weights. However, unlike EM for GMMs, the update expression for the
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component parameters (5.10) is implicit and must be solved numerically. Another

difference between the GMM and SDA EM algorithms is in how the centroids are

estimated. For GMMs, the component means {uhl}, which are the metric centroids,

are updated at each iteration of the M step. For mixture SDA, the centroids {µhl}
are estimated at the beginning of the algorithm and kept constant throughout the

iterations.

The update expressions for the mixture SDA parameters are derived from the

expression of the expected log-likelihood of the observed similarities. A standard as-

sumption in EM is that the observed data are independent and identically distributed

given the class and mixture component. For mixture SDA, this assumption means

that the training sample similarities {Tg(zi)} = {s(zi, µhl)}, zi ∈ Xg to the component

centroids are identically distributed and conditionally independent given the lth class

component. Then, the expected log-likelihood of {Tg(zi)} is

L({Tg(zi)}|θgh) =

ng∑
i=1

G∑

h=1

ch∑

l=1

log
(
wghlγghle

λghls(zi,µhl)
)
P (C = l|s(zi, µhl), θgh).

(5.13)

Using the properties of the logarithm and rearranging the terms, L({Tg(zi)}|θgh)

splits into the terms depending on wghl and the terms depending on λghl and γghl:

L({Tg(zi)}|θgh) =

ng∑
i=1

G∑

h=1

ch∑

l=1

log(wghl)P (C = l|s(zi, µhl), θgh)

+

ng∑
i=1

G∑

h=1

ch∑

l=1

log(γghl)P (C = l|s(zi, µhl), θgh)

+

ng∑
i=1

G∑

h=1

ch∑

l=1

λghls(zi, µhl)P (C = l|s(zi, µhl), θgh). (5.14)

The standard EM approach to maximizing (5.14) is to set its partial derivatives

with respect to the parameters to zero and solve the resulting equations. This is the

approach adopted here for estimating the mixture SDA parameters θgh for all g, h.

The derivation of the expression for the component weights {wghl} follows directly
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from (5.14); both the derivation of and the final expression for the component weights

are identical to the metric mixtures case. Section 5.3.1 re-derives the well-known

expression for wghl.

Applying the EM approach, however, does not lead to explicit expressions for

{λghl} and {γghl}. Instead, it leads to many single-parameter constraint expressions

for the mean similarities of the training data to the mixture component centroids.

These expressions are solved with the same numerical solver used in the single-centroid

SDA classifier of Section 3.1. Section 5.3.2 derives the constraints from the EM

approach and shows that they are weighted versions of the constraints which appear

in the maximum entropy formulation of the single-centroid SDA.

Section 5.3.3 describes how the centroids are estimated and Section 5.3.4 discusses

initialization strategies for the mixture SDA parameters.

5.3.1 Estimating the Component Weights

To compute the log-likelihood-maximizing weights wghl, one uses the standard tech-

nique of taking the derivative of the log-likelihood with respect to wghl, setting it to

zero, and solving the resulting expression for wghl. The constraint
∑ch

l=1 wghl = 1 is

taken into account with the Lagrange multiplier η:

∂

∂wghl

{
L({Tg(zi)}|θgh) + η

(
ch∑

l=1

wghl − 1

)}
=

ng∑
i=1

1

wghl

P (C = l|s(zi, µhl), θgh)+η = 0,

which gives the well-known expression for the component weights of a mixture model

in terms of the responsibilities:

wghl =
1

ng

ng∑
i=1

P (C = l|s(zi, µhl), θgh). (5.15)

5.3.2 Estimating γghl and λghl

The same approach used for estimating the component weights {wghl} is adopted

to estimate the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing
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values of the parameters by setting the corresponding partial derivatives to zero and

solving the resulting equations. First, since each γghl is simply a scaling factor that

ensures that each mixture component is a probability mass function, one rewrites

γghl =
1∑

s(X,µhl)∈Ω eλghls(X,µhl)
, (5.16)

where X ∈ Xg is a random sample from class g, s(X,µhl) is its corresponding random

similarity to component centroid µhl, and Ω is the set of all possible similarity values.

Substituting (5.16) into (5.14), setting the partial derivative of L({Th(zi)}|θgh) with

respect to λghl to zero, and rearranging the terms gives

∑
s(X,µhl)∈Ω s(X,µhl)e

λghls(X,µhl)

∑
s(X,µhl)∈Ω eλghls(X,µhl)

ng∑
i=1

P (C = l|s(zi, µhl), θgh) =

ng∑
i=1

s(zi, µhl)P (C = l|s(zi, µhl), θgh). (5.17)

The first term on the left side of (5.17) is simply the definition of the expected

value of the similarity of samples in class g to the lth centroid of class h. Thus, one

rewrites (5.17)

EP (T (x)|Y =g)[s(X, µhl)] =

∑ng

i=1 s(zi, µhl)P (C = l|s(zi, µhl), θgh)∑ng

i=1 P (C = l|s(zi, µhl), θgh)
. (5.18)

Expression (5.18) is an equality constraint on the expected value of the similarity

of samples zi ∈ Xg to the component centroids µhl of class h. This is the same

type of constraint that must be solved in the mean-constrained, maximum entropy

formulation of single-centroid SDA (3.4). In (3.4), the mean similarity of samples

from class g to the single centroid of class h is constrained to be equal to the observed

average similarity. Analogously, in (5.18), the mean similarity of the samples from

class g to the lth centroid of class h is constrained to be equal to the weighted

sum of the observed similarities, where each similarity is weighted by its normalized

responsibility. To solve for λghl, one uses the same numerical procedure used to solve
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(3.4) and described in Section 3.1. Thus, solving for all the {λghl} requires solving

the G×∑G
h=1 ch expressions of (5.18).

It is not surprising that taking the EM approach to estimating λghl has lead to

the same expressions for the mean constraints in the maximum entropy approach

to density estimation. It is known that maximum likelihood (ML) – the foundation

for EM – and maximum entropy are dual approaches to estimating distribution pa-

rameters which lead to the same unique solution based on the observed data [36].

The ML approach assumes exponential distributions for the similarities, maximizes

the likelihood, and arrives at constraint expressions whose solutions give the desired

values for the parameters. The maximum entropy approach assumes the constraints,

maximizes the entropy, and arrives at exponential distributions whose parameters

satisfy the given constraints. This powerful dual relationship between ML and max-

imum entropy extends from metric problems to similarity-based problems; for this

reason it leads to the the constraint expression (5.18), from which λghl is numerically

computed. The corresponding γghl is found by applying (5.16).

5.3.3 Estimating the centroids

Estimating the centroids of a mixture model encompasses two problems: estimating

the number of components (i.e. centroids) {ch}, and estimating the centroids {µhl}.
This work adopts the common metric learning practice of cross-validating the number

of mixture components {ch}. The centroids {µhl} are estimated with the K-medoids

algorithm [27], using the maximum-sum-similarity criterion (2.8). The initial cen-

troids are selected randomly from the training set samples zi ∈ Xh. K-medoids was

described in Section 2.2.2.

5.3.4 Initializing EM for SDA

In this work, the component weights {wghl} are uniformly initialized to wghl = 1/ch

and the components are assigned uniform initial probability P (s(zi, µhl)|C = l, θgh) =
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1/ch. This initialization reflects the assumption that initially the mixture compo-

nents equally contribute to a sample’s class-conditional probability: it is the least-

assumptive initialization. Another strategy would be to initialize the weights by the

fraction of training samples assigned to the clusters which result from estimating the

centroids with K-medoids. The component probabilities may also be initialized by

estimating the SDA parameters {λghl} and {γghl} from the K-medoids clusters. This

is analogous to the GMM initialization strategy based on the results of the K-means

algorithm. In practice, as shown in Section 5.3.5 and in Chapter 6, the simple uniform

initialization works well.

5.3.5 Example of SDA Parameter Estimation with EM

As a concrete example of SDA parameter estimation with EM, consider two classes

whose elements are random perturbations of prototypical binary vectors in 12 dimen-

sions. Each class has two prototypical vectors, so that ch = 2 for both h = 1, 2. The

component prototypes are

µ11 = [0 0 0 0 0 0 0 0 0 0 0 0]

µ12 = [0 0 0 0 0 0 1 1 1 1 1 1]

µ21 = [1 1 1 1 1 1 1 1 1 1 1 1]

µ22 = [1 1 1 1 1 1 0 0 0 0 0 0]

The elements of each class are generated by randomly drawing one of the prototypes

with probability 1/4, and by independently perturbing (flipping) each dimension of

the prototypes with probability 1/10. The mixture SDA model parameters are esti-

mated from 1000 training samples, keeping the number of components per class fixed

at 2. The Hamming similarity is the adopted similarity function. Figure 5.1 shows

the log-likelihood of the class one samples for 30 iterations of the EM algorithm.

As expected, the likelihood increases at each iteration and converges to a maximum

value.
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Figure 5.1: Log-likelihood of the training samples zi ∈ X1 as a function of iteration
number.

Figure 5.2 shows the component weights as they converge to their ML values. All

the final values for the weights are close to the true prior weight of 0.5.

Figure 5.3 shows the λ1hl parameters during the EM iterations. As for the like-

lihood and the component weights, they converge to their ML values. Note that for

the similarities of the samples in class g = 1 to the centroids of class h = 1 the

corresponding λ111 and λ112 converge to positive values, but for the similarities of

class g = 1 samples to the centroids of class h = 2, the corresponding λ121 and λ122

converge to negative values. These final values are consistent with the distribution

of the similarities: The within-class one similarities are on average higher than the

inter-class similarities. The positive exponents capture the information about the

higher average similarity and cause their corresponding exponential mixture compo-

nents to assign higher probability to higher similarity. Conversely, negative exponents
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Figure 5.2: Mixture weights {w1hl} for h = 1, 2 and l = 1, 2 as a function of iteration
number.

correctly favor assigning higher probabilities to lower similarities. The end result is

consistent with the intuitive idea of similarity: the mixture SDA model for class g = 1

assigns a test sample x ∈ X1 high probability to be in class g = 1 if its similarities

to µ11l are high and its similarities to µ12l are low. Finally, the K-medoids algorithm

correctly identified the true component centroids. Analogous results, not shown here

for conciseness, are obtained for class two.
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Figure 5.3: Mixture exponential parameters {λ1hl} for h = 1, 2 and l = 1, 2 as a
function of iteration number.
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Chapter 6

EXPERIMENTS

SDA (Section 3.1), local SDA (Section 4.1), mixture SDA (Section 5.2), and

nnSDA (Section 3.2.1) are compared to other similarity-based classifiers in a series of

experiments: the tested classifiers are the nearest centroid (NC), local nearest cen-

troid (local NC), k-nearest neighbors (k-NN) in similarity space, condensed nearest

neighbor (CNN) [27] in similarity space, and the potential support vector machine

(PSVM) [30]. When the features underlying the similarity are available, the classifiers

are also compared to the naive Bayes classifier [27]. The counting and the VDM sim-

ilarities are used to compute the similarities on which the classifiers operate, except

for cases in which similarity is provided as part of benchmark datasets.

The first set of comparisons involves simulated binary data, where each class is

generated by random perturbations of one or two centroids. Illustrative, smaller-scale

experiments based on randomly perturbed binary vectors were described in Chapters 3

and 5. This chapter presents results from more extensive experiments. The perturbed

centroids simulation is a scenario where each class is characterized by one or two

prototypical samples (centroids), but samples have random perturbations that make

them different from their class centroid in some features. Thus, this simulation fits

the centroid-based SDA models, in that each class is defined by perturbations around

one or two prototypical centroids.

Then, three benchmark datasets are investigated: the protein dataset, the voting

dataset, and the sonar dataset. The results on the simulated and benchmark datasets

show that the proposed similarity-based classifiers are effective in classification prob-

lems spanning several application domains, including cases when the similarity mea-
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sures do not possess the metric properties usually assumed for metric classifiers and

when the underlying features are unavailable.

For local SDA and local NC, the class prior probabilities are estimated as the

empirical frequency of each class in the neighborhood; for SDA, mixture SDA, nnSDA,

NC, and CNN they are estimated as the empirical frequency of each class in the

entire training data set. The k-NN classifier is implemented in the standard way,

with the neighborhood defined by the test sample’s k most similar training samples,

irrespective of the training samples class. Ties are broken by assigning a test sample

to class one.

6.1 Perturbed Centroids

In this two-class simulation, each sample is described by d binary features such that

B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or

two centroids). Every sample drawn from each class is a class centroid with some fea-

tures possibly changed, according to a feature perturbation probability. Several vari-

ants of the simulation are presented, using different combinations of number of class

centroids, feature perturbation probabilities, and similarity measures. Given samples

x, z ∈ B, s(x, z) is either the counting or the VDM similarity. The simulations span

several values for the feature dimensions d and are run several times to better esti-

mate mean error rates. For each run of the simulation and for each number of features

considered, the neighborhood size k for local SDA, local NC, and k-NN is determined

independently for the three classifiers by leave-one-out cross-validation on the training

set of 100 samples; the range of tested values for k is {1, 2, . . . 20, 29, 39, . . . , 99}. The

optimum k is then used to classify 1000 test samples. Similarly, the candidate num-

bers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To keep the

experiment run time within a manageable practical limit, five-fold cross validation

was used to determine the number of components for mixture SDA, and the mix-

ture SDA EM algorithm was limited to 30 iterations for each cross-validated mixture
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model. The parameters for the PSVM classifier are cross-validated over the range of

possible values ε = {0.1, 0.2, . . . 1} and C = {1, 51, 101, . . . 951}.
The perturbed centroid simulation results are in Tables 6.1-6.8. For each value of

d, the lowest mean cross-validation error rate is in bold. Also in bold for each d are

the error rates which are not statistically significantly different from the lowest mean

error rate, as determined by the Wilcoxon signed rank test for paired differences,

with a significance level of 0.05. The naive Bayes classifier results are also included

for reference.

6.1.1 Perturbed Centroids — One Centroid Per Class

Each class is generated by perturbing one centroidal sample. There are two, equally

likely classes, and each class is defined by one prototypical set of d binary features,

c1 or c2, where c1 and c2 are each drawn uniformly and independently from {0, 1}d.

A training or test sample z drawn from class g has the ith feature z[i] = cg[i] with

probability 1 − pg, and z[i] 6= cg[i] with perturbation probability pg. In one set of

simulation results p1 = 1/3 and p2 = 1/30; thus, class two is well-clustered around

its generating centroid and the two classes are well-separated. In another set of

simulation results, p1 = 1/3 and p2 = 1/4 and the two classes are not as well separated.

Classifiers are trained on 100 training samples and tested on 1000 test samples per

run; twenty runs are executed for a total of 20, 000 test samples. The number of

features d ranges from d = 2 to d = 200 in the simulation, but the number of training

samples is kept constant at 100, so that d = 200 is a sparsely populated feature space.

This procedure was repeated for the counting and for the VDM similarities, so there

are four sets of results for the one centroid simulation, depending on the perturbation

probabilities and the similarity measure used. The results are in Tables 6.1-6.4.

The performance of all classifiers increases as d increases. For large d, the feature

space is sparsely populated by the training and test samples, which are segregated

around their corresponding generating centroids. This leads to good classification
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Table 6.1: Perturbed centroids experiment - One centroid per class. Misclasssifi-
cation percentage for counting similarity, perturbation probabilities p1 = 1/3 and
p2 = 1/30.

d Local Local SDA NC nnSDA k-NN CNN PSVM Naive

SDA NC Bayes

2 15.58 15.58 35.13 23.47 49.80 15.58 19.22 16.07 15.58

4 11.74 11.82 23.97 22.54 39.08 12.05 13.85 13.01 11.98

8 4.88 6.10 12.85 14.07 6.35 6.19 7.86 6.21 4.63

12 3.35 3.97 10.16 11.50 5.00 4.26 6.01 3.74 2.46

25 2.27 3.50 7.36 11.49 2.27 3.49 5.30 2.16 1.77

40 1.86 2.79 3.65 8.79 1.38 2.79 4.38 1.33 1.24

50 2.02 2.37 2.71 7.94 1.60 2.31 3.24 1.33 1.29

75 1.90 2.58 2.56 7.83 1.31 2.27 3.82 1.43 1.43

100 2.11 2.32 2.05 5.92 1.03 2.16 3.69 1.65 1.65

125 1.86 2.07 1.67 6.21 1.47 1.96 3.56 1.58 1.58

150 1.40 1.50 1.23 4.86 1.08 1.44 2.55 1.20 1.20

175 1.63 1.64 1.37 4.28 1.29 1.60 2.59 1.33 1.33

200 1.41 1.42 1.26 4.20 0.99 1.38 2.67 1.26 1.26

performance for all classifiers. For small d, the feature space is densely populated

by the samples, and the two classes considerably overlap, negatively affecting the

classification performance.

Across all four sets of results, the naive Bayes classifier almost always gives the

best performance. Its assumption that the features are independent captures the true

underlying relationship of the sample features makes the naive Bayes classifier well

suited for these particular data sets: indeed the samples are generated as random

vectors of independent binary features. The consequent excellent performance of

the naive Bayes classifier provides a reference point for the other classifiers. More
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Table 6.2: Perturbed centroids experiment - One centroid per class. Misclasssifi-
cation percentage for counting similarity, perturbation probabilities p1 = 1/3 and
p2 = 1/4.

d Local Local SDA NC nnSDA k-NN CNN PSVM Naive

SDA NC Bayes

2 30.88 30.88 48.48 30.29 49.70 30.88 31.07 30.66 30.62

4 31.19 30.30 35.56 29.83 44.41 30.92 32.63 29.25 29.18

8 22.63 22.56 23.30 21.95 33.13 23.12 24.13 21.18 21.02

12 18.11 18.58 18.39 16.99 29.52 18.42 20.04 17.03 16.56

25 12.16 13.90 13.40 13.17 26.21 10.40 14.82 8.84 7.96

40 7.87 11.42 10.33 12.45 17.59 7.26 11.58 5.67 4.91

50 6.59 8.98 9.47 11.32 19.36 6.42 10.37 4.43 3.69

75 5.32 6.96 6.06 8.42 12.29 4.17 7.89 2.67 2.19

100 4.84 6.56 5.66 6.96 9.09 3.93 5.61 2.88 2.69

125 3.23 5.10 3.98 6.25 11.82 2.65 4.81 2.08 2.01

150 3.03 3.84 3.07 5.13 6.38 2.61 4.50 1.97 1.94

175 3.56 3.86 3.86 6.30 4.81 2.83 4.33 2.38 2.38

200 2.61 2.66 2.78 3.66 2.42 2.08 3.15 1.75 1.75

generally, when a classification problem involves samples natively embedded in an

Euclidean space, as in these perturbed centroids experiments, metric-space classifiers

like naive Bayes can perform well. In these cases, the similarity-based classification

framework provides no clear advantage.

On the other hand, naive Bayes cannot be used when the samples are not described

by vectors of independent features, either because the features are not known, the

independence assumption is too restrictive for effective performance, or because the

Euclidean representation does not sufficiently capture the pairwise relationships of

the samples. In these cases, the similarity-based techniques provide solutions to
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Table 6.3: Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30.

d Local Local SDA NC nnSDA k-NN CNN PSVM Naive

SDA NC Bayes

2 16.36 16.36 34.13 26.41 48.90 16.36 22.17 16.87 16.36

4 11.28 11.18 15.22 19.10 38.16 11.37 12.23 12.20 11.23

8 6.71 7.51 9.89 14.52 8.09 7.44 8.71 6.89 5.42

12 4.69 6.17 5.20 12.99 4.48 5.85 7.36 4.78 3.33

25 2.96 3.46 2.56 9.87 4.08 3.35 4.90 2.09 1.59

40 2.36 2.60 2.62 7.28 4.65 2.49 4.37 1.78 1.67

50 2.60 2.86 2.61 7.02 4.45 2.80 4.70 1.97 1.94

75 2.42 2.59 2.11 6.09 2.96 2.47 4.03 1.93 1.93

100 1.88 1.90 1.74 3.97 2.38 1.88 2.46 1.68 1.68

125 1.67 1.68 1.54 3.25 2.03 1.67 2.39 1.52 1.52

150 1.68 1.68 1.65 2.92 1.89 1.68 2.17 1.64 1.64

175 1.60 1.61 1.57 2.59 1.63 1.61 2.08 1.56 1.56

200 1.63 1.63 1.62 2.25 2.14 1.63 1.84 1.62 1.62

classification problems. Thus, in these perturbed centroids experiments, the naive

Bayes classifier is a good reference for assessing the effectiveness of the similarity-

based classifiers, but it is not considered for the Wilcoxon significance tests because

it is not generally applicable to similarity-based classification.

With few exceptions the PSVM performs best on the four sets of results on a

wide range of d. This is likely because the PSVM classifies a test sample based

on its similarities to the entire training set. Recall from (2.15) that the class of a

test sample is determined from the weighted sum of the similarities s(x, zi) of the

test sample to all the training samples, where the weights α̂ associated with each

similarity are computed with numerical optimization on the training set. In contrast,
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Table 6.4: Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4.

d Local Local SDA NC nnSDA k-NN CNN PSVM Naive

SDA NC Bayes

2 34.38 34.38 42.72 34.17 48.50 34.38 33.76 34.56 34.66

4 29.85 30.10 30.04 28.47 44.27 29.59 30.55 27.85 27.46

8 25.66 26.05 24.38 24.16 26.99 25.52 26.47 24.24 23.41

12 18.71 19.28 17.99 17.98 22.86 19.95 20.82 18.26 16.90

25 10.75 11.49 9.92 10.58 14.21 11.01 12.04 9.10 8.03

40 8.00 8.28 6.91 7.88 8.68 7.57 9.10 6.02 5.00

50 6.86 7.97 5.93 6.98 8.03 5.98 8.81 4.81 3.82

75 4.18 5.24 3.45 4.81 4.08 3.53 4.22 2.63 2.02

100 3.76 4.06 3.19 4.02 2.71 3.26 3.62 2.50 2.22

125 2.67 3.02 2.03 2.73 2.15 2.13 2.86 1.65 1.52

150 2.90 2.97 2.56 3.41 1.73 2.68 3.16 2.25 2.13

175 2.56 2.75 2.25 2.62 2.07 2.46 2.54 2.12 2.10

200 2.31 2.39 2.18 2.56 1.77 2.27 2.90 2.02 1.98

local methods such as local SDA, local NC, nnSDA, k-NN, and CNN make use of

a subset of the training samples and thus have less information available to classify.

Global methods based on the similarity-to-class-centroid summary statistic such as

SDA, NC, and CNN also use less information. It is plausible that the ability to

make use of all the similarity information in the training set and to optimally weight

the similarities to the training samples gives the PSVM a performance advantage

over the other techniques. However, in spite of this advantage, the results show that

for low and high values of d the SDA-based techniques yield statistically equivalent

performance to the PSVM, and in some cases match or exceed its results. When the

PSVM statistically produces significantly different results from the other techniques,
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its performance does not hugely surpass them. Thus the similarity-based techniques

possess the ability to produce good classification results using less information. This

quality can be immensely useful when few training samples are available.

In all four sets of results, the SDA-based algorithms generally perform better than

their non-generative counterparts: local SDA performs better than local NC and SDA

performs better than NC. This shows that generative models based on the similarity

of samples to local or global class centroids provide increased discriminative power

over the non-generative centroid-based similarity models. Furthermore, in almost all

cases across the four sets of results, local SDA performs better than SDA. While the

classification performance of SDA is good, its inherent model bias prevents it from

achieving even better performance; local SDA is not as susceptible to model bias, and

is able to perform very well. Still, the SDA performance is close to that of the local

SDA in all cases and sometimes it surpasses it (VDM similarity with p2 = 1/4), a

confirmation that the single-centroid generative model at the heart of SDA matches

well the perturbed single-centroid experimental setup for these sets of results.

The similarity-space k-NN performs well, albeit not as well as the PSVM. Com-

pared to SDA, k-NN performs better only for the counting similarity and p2 = 1/4.

Since SDA matches well the class models for the generated samples, it is not surpris-

ing that it performs better than k-NN, which does not rely on class models. However,

k-NN does better when the class two perturbed samples are more likely to differ

from their generating class two centroid (p2 = 1/4), that is when the classes over-

lap more. In this case, it is more difficult to estimate the class centroids, and the

SDA performance is affected. On the other hand, SDA is better than k-NN for the

VDM similarity, for both p2 = 1/30 and p2 = 1/4. The VDM similarity is calcu-

lated from class-dependent lookup tables pre-computed from the training set, and

this additional information seems to favor the SDA classifier more than the k-NN.

Local SDA, performs slightly better than k-NN when p2 = 1/30 for both counting

and VDM similarities.
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The CNN classifier generally does not perform as well as k-NN. This is expected,

because, as for its metric learning analog, the condensing process primarily aims to

reduce the size of large training sets and possibly eliminate outliers rather than to im-

prove classification performance. The observed lower performance of CNN compared

to k-NN reflects the expectation that classification performance will degrade when

using the condensed training set instead of the full set of available training samples.

The nnSDA classifier performs well for the counting similarity when p2 = 1/30,

and in general for higher values of d. For low values of d the performance is particularly

poor: for d = 2 the error rate is essentially equal to that of a random classifier (50%)

and for d = 4 it is only slightly better. In fact, the nnSDA performance is limited by

the interplay of its asymptotic behavior and the value of d. Recall that by Lemma

(1) from Section 4.2, P (s(x, Zk) = smax) → 1 as k, N →∞ and k/N → 0, where k is

the neighborhood size, N is the number of available training samples, and Zk is the

k-th nearest neighbor of test sample x. Then, it follows that P (snn,h(x) = smax) → 1

for all h as k, n → ∞, because snn,h(x) = s(x, Z1) for Z1 ∈ Xh as k → ∞. Thus,

for nnSDA, the similarities of a test sample to its nearest neighbors in each class are

all identical in the limit of infinite number of training samples. Consequently, for a

large training set, all class discriminants in the nnSDA classification rule (3.14) are

identical and therefore uninformative. The classification rule (3.14) reduces to the

trivial rule that classifies according to the cost-adjusted class priors,

ŷ = arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g). (6.1)

When 0-1 costs are used, as in this simulation, the rule (6.1) always classifies as

the class g with the highest prior probability P̂ (Y = g), estimated as the empirical

frequency from the training data:

ŷ = arg max
g=1,...,G

P̂ (y = g). (6.2)

In this experiment, the samples are generated from two, a priori equally likely classes,
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so the limit misclassification rate is 1−max
g

P̂ (Y = g) ≈ 0.5.

The limit error rate is noticeable when d is small. In this case the similarity can

take on values in a limited range bounded by d (s(x, z) ∈ [0, 1 . . . d] for the counting

similarity) and the training set is highly redundant. Thus, a test sample x is very

likely to be maximally similar to its nearest neighbor from each class, and snn,h(x) is

uninformative. In higher dimensions, the experimental results show that the training

set is sufficiently sparse for effective classification. Thus nnSDA is a viable classifier

for sparse training sets which do not cover the entire range of possible values for the

chosen similarity. In applications when few training samples are available, nnSDA

can be a valuable tool for achieving actionable classification results.

6.1.2 Perturbed Centroids — Two Centroids Per Class

In this variation of the perturbed centroids simulation, each class is characterized

by two prototypical samples, c11, c12 for class one, and c21, c22 for class two. Each

time the simulation is run, the centroids c11, c12, c21, c22 are drawn independently and

identically using a uniform distribution over B.

Every sample drawn from each class is a perturbed version of one of the two

class prototypes, where the class labels are drawn independently and identically with

probability 1/2. A training or test sample z drawn from class one is randomly selected

to be z = c11 or z = c12 with probability 1/2, and then for each i = 1, . . . , d, z’s ith

feature is probabilistically perturbed so that z[i] 6= c11[i] with probability p11 (or

z[i] 6= c12[i] with probability p12). Thus on average, a randomly drawn sample based

on c11 will have dp11 features that are different from the class prototype c11’s features.

Likewise, a training or test sample v drawn from class two starts out as v = c21 or

v = c22 with probability 1/2, but then for each i = 1, . . . , d, v’s ith feature is changed

so that v[i] 6= c21[i] with probability p21 (or v[i] 6= c22[i] with probability p22).

The number of features d ranges from d = 2 to d = 200 in the simulation, but

the number of training samples is kept constant at 100, so that d = 200 is a sparsely
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populated feature space. Two different sets of values of the perturbation probabilities

p11, p12, p21, p22 were used: in the first case p11 = p12 = 1/3 and p21 = p22 = 1/30, so

that the class two samples are much more tightly clustered around c21 and c22 than the

class one samples are with respect to c11 and c12. In the second case, p11 = p12 = 1/3

and p21 = p22 = 1/4, resulting in a higher Bayes error. Each simulation was run

twenty times, for a total of 20,000 test samples. The resulting mean error rates are

given in Tables 6.5-6.8.

Table 6.5: Perturbed centroids experiment - Two centroids per class. Misclasssifica-
tion percentage for counting similarity, perturbation probabilities p11 = p12 = 1/3
and p21 = p22 = 1/30.

d Local Local SDA Mixture NC nnSDA k-NN CNN PSVM Naive

SDA NC SDA Bayes

2 26.41 26.41 47.52 28.93 38.98 49.30 26.41 27.51 27.16 29.09

4 13.80 13.68 34.77 18.32 34.84 38.04 13.26 16.84 17.18 17.95

8 9.23 9.25 29.32 13.96 26.77 9.54 9.29 12.82 12.62 9.96

12 5.61 6.47 31.20 10.56 27.05 7.35 6.25 10.87 8.72 7.96

25 3.11 4.37 28.75 2.39 25.90 3.21 4.03 9.45 4.08 2.67

40 2.88 4.25 30.84 6.54 28.23 1.91 3.94 8.69 2.21 1.39

50 2.94 4.89 27.77 1.73 30.12 1.32 4.35 9.10 1.77 1.16

75 2.04 3.21 26.38 3.69 27.74 1.61 2.75 7.61 0.95 1.12

100 2.21 3.03 25.39 2.30 24.58 1.37 2.60 5.25 1.52 1.08

125 2.46 2.96 25.51 4.74 24.83 1.42 2.68 5.33 1.59 1.47

150 1.55 1.80 25.00 4.54 26.55 1.54 1.76 5.34 1.00 0.78

175 1.93 2.38 25.32 2.72 21.40 1.16 2.02 4.17 1.29 1.21

200 1.44 1.61 23.87 1.63 19.28 1.38 1.49 4.45 1.10 0.95

For all four sets of results, the local SDA classifier performs better than the lo-

cal NC classifier. This result agrees with the analogous case for the single centroid
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Table 6.6: Perturbed centroids experiment - Two centroids per class. Misclasssifica-
tion percentage for counting similarity, perturbation probabilities p11 = p12 = 1/3
and p21 = p22 = 1/4.

d Local Local SDA Mixture NC nnSDA k-NN CNN PSVM Naive

SDA NC SDA Bayes

2 40.02 40.19 49.36 40.21 42.87 49.90 39.88 37.64 39.85 39.91

4 33.43 33.77 39.96 39.13 37.95 46.61 33.17 34.91 34.67 32.62

8 29.81 31.84 36.82 33.52 34.94 40.20 29.10 35.09 30.12 28.43

12 27.27 29.42 35.24 39.11 33.19 38.37 27.19 30.30 27.51 25.90

25 19.89 22.91 29.83 39.86 28.81 33.77 17.09 22.75 16.79 17.51

40 14.05 16.91 28.60 34.62 26.70 24.45 11.49 18.14 13.10 12.72

50 11.65 14.64 26.82 34.22 25.61 31.04 9.04 15.90 10.19 9.68

75 8.16 9.01 24.61 30.99 24.48 20.37 5.84 12.71 7.51 6.00

100 7.67 8.00 23.59 30.20 21.68 17.09 4.83 9.68 4.37 3.96

125 6.05 6.79 23.70 26.82 22.50 15.18 3.52 7.87 3.94 2.99

150 5.05 6.31 22.36 26.24 21.62 11.50 3.13 6.13 2.90 2.79

175 3.72 4.15 25.02 23.29 23.79 10.43 2.14 6.29 2.39 1.81

200 3.45 3.85 21.86 21.74 21.83 9.41 2.19 5.28 2.36 2.24

experiments and attests to the advantage that similarity-based generative models

provide over simpler nearest-centroid classifiers. However, the SDA classifier yields

better classification than its counterpart NC classifier only for the VDM similarity.

For the counting similarity, SDA does not provide an advantage over NC. There are

two causes that contribute to this outcome. First, the single-centroid SDA is a bi-

ased model that does not match the true two-centroids-per-class experimental setup.

Consider class one and its centroids, c11 and c12. SDA at best correctly estimates

one of the two centroids per class, let’s say ĉ11. Thus, the estimated centroid-based

generative model for class one is a good match for the samples which are generated as
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Table 6.7: Perturbed centroids experiment - Two centroids per class. Misclasssifica-
tion percentage for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and
p21 = p22 = 1/30.

d Local Local SDA Mixture NC nnSDA k-NN CNN PSVM Naive

SDA NC SDA Bayes

2 25.83 25.61 30.60 34.05 39.07 49.00 25.61 30.83 28.64 27.95

4 15.22 13.46 22.30 17.71 26.00 40.72 13.59 20.42 16.87 18.01

8 10.96 11.81 11.77 13.66 22.53 16.63 11.15 12.14 14.16 11.76

12 8.17 9.46 7.92 9.41 19.07 9.41 8.52 12.60 10.11 7.58

25 4.52 6.19 3.77 4.39 16.32 5.95 5.92 8.30 4.23 3.63

40 2.96 3.73 2.30 2.77 16.41 4.59 3.79 6.66 2.79 2.25

50 2.59 3.86 1.74 2.58 15.96 3.50 3.56 6.61 1.79 1.80

75 2.33 3.40 1.57 1.57 13.69 3.20 2.90 5.59 1.15 1.45

100 2.17 3.06 1.52 1.03 11.35 2.81 2.79 5.62 1.24 1.52

125 2.51 2.90 1.63 1.36 11.36 2.25 2.74 5.05 1.39 1.62

150 2.10 2.50 1.39 1.44 11.45 2.32 2.30 4.83 1.03 1.38

175 2.12 2.33 1.47 1.44 10.82 1.62 2.20 4.21 1.31 1.46

200 1.80 1.99 1.19 1.88 10.46 2.04 1.93 3.28 1.32 1.18

random perturbations of c11. The model, however, is not a good match for samples

generated as random perturbations of c12. The model cannot distinguish the similar-

ities of these class one samples to ĉ11 from their similarities to the centroids of class

two. The result is that the c12-generated samples are classified according to the class

priors, that is half as class one and half as class two. The same argument applies

to class two, so that overall about 25% of the samples are misclassified. Indeed, the

SDA error rates quickly settle to ≈ 25% for the counting similarity for medium to

large values of d. For lower d, the class overlap due to the density of the feature space

dominates the misclassification rate.
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Table 6.8: Perturbed centroids experiment - Two centroids per class. Misclasssifica-
tion percentage for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and
p21 = p22 = 1/4.

d Local Local SDA Mixture NC nnSDA k-NN CNN PSVM Naive

SDA NC SDA Bayes

2 39.98 40.01 42.57 40.26 40.77 48.00 40.01 39.66 41.08 38.89

4 37.28 37.45 37.98 34.99 38.53 48.95 37.21 37.09 36.19 37.34

8 30.80 32.80 30.62 31.26 30.99 36.88 31.84 33.43 30.23 29.37

12 27.26 28.85 27.87 26.97 28.59 31.06 27.65 29.82 29.68 25.15

25 21.87 21.86 20.88 22.03 21.77 23.96 20.82 23.27 21.55 17.63

40 16.56 18.50 16.41 18.01 17.96 19.08 16.91 18.98 15.20 12.44

50 14.92 17.22 16.04 16.11 17.65 16.89 14.96 16.07 13.92 11.21

75 11.98 13.40 12.41 11.68 13.91 12.16 10.57 11.65 8.99 7.53

100 8.54 9.94 9.04 9.01 11.09 8.83 7.55 9.66 6.87 4.66

125 7.24 8.31 7.61 8.04 9.68 8.45 6.09 8.24 6.07 3.64

150 6.64 8.04 7.03 6.17 9.68 6.41 5.03 6.36 5.15 3.02

175 5.00 5.57 5.78 5.32 8.38 5.51 4.03 7.18 4.15 2.04

200 4.46 5.08 5.00 4.31 6.77 4.86 3.39 4.81 3.91 2.31

The second cause contributing to the observed SDA results stems from the way

the class centroids are generated. Each class centroid is generated randomly from a

multivariate uniform distribution over the feature space. Thus, there is no guarantee

that two centroids from the same class be more similar to each other than two cen-

troids from different classes, that is there is no guarantee that s(c1i, c1j) < s(c1i, c2j)

for i, j = 1, 2. On the contrary, on average over many draws from the sample space,

the centroids are equally similar, and consequently the samples generated as pertur-

bations of c12, c21, and c22 are approximately equally similar to c11. This amplifies the

detrimental effect of the bias in the SDA model. If the condition on the similarities
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between centroids s(c1i, c1j) < s(c1i, c2j) were enforced, then even the biased SDA

model would produce better classification results.

The performance of mixture SDA is comparable to that of SDA if not slightly bet-

ter. For the particularly simple case of the counting similarity with p21 = p22 = 1/30,

the mixture SDA provides an order of magnitude improvement over SDA, showing

that it is able to alleviate the bias problem inherent to the single-centroid SDA. How-

ever, in all other perturbed centroids results the comparison between the performance

of mixture SDA and SDA is inconclusive. For p21 = p22 = 1/4, the overlap between

the classes overshadows any performance gains mixture SDA might obtain; for the

VDM results, the advantage provided by the optimized similarity measure brings the

performance of SDA and mixture SDA closer together, and thus limits the gains of

mixture SDA. Given the increase in complexity of the mixture SDA classifier and its

inconclusive performance advantages, for these experiments it might be more advan-

tageous to use local classifiers such as local SDA to obtain improved performance.

The results show that local SDA consistently performs very well, and with only a few

exceptions outperforms SDA and mixture SDA.

Note that for the VDM similarity, SDA produces excellent classification results

which are very competitive with local SDA and local NC, and consistently outperform

NC. The large improvement is attributable to the fact that the VDM undergoes

a training phase, performed on the training set, in which the class information is

used to optimize the similarity measure for class discrimination. This training step

greatly benefits the SDA classifier and yields improved classification results for all

classifiers when compared to the counting similarity, which does not rely on such

pre-computations.

As for the single-centroid results, nnSDA is most effective at higher values of d,

when the feature space is sparsely populated by the samples. A consistently good

performer is the k-NN classifier, which is very competitive with local SDA, local

NC, and the PSVM when p21 = p22 = 1/30, and often outperforms them when
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p21 = p22 = 1/4. Using a subset of the training samples, as with CNN, negatively

impacts the classification performance for all sets of simulations, consistently with

the single-centroids results discussed in the previous section.

6.2 Benchmark Data Sets

Three benchmark data sets are used to analyze further the performance of various

similarity-based classifiers: a data set of protein similarities, a data set of congressional

voting records, and a data set of aural sonar similarities. The tested classifiers are

the local SDA, local NC, SDA, NC, nnSDA, k-NN, and PSVM classifiers. Based on

their comparatively lackluster performance on the perturbed centroids, the mixture

SDA and CNN classifiers are not tested on these data sets, as the long time required

to cross-validate their parameters does not justify their attainable performance.

The performance of the classifiers on all three benchmark data sets is evaluated

as the leave-one-out error, as follows. One sample is set aside as the test sample, and

all other N − 1 samples are used for training. The parameters for each classifier are

cross-validated on the N − 1 training samples using leave-one-out cross validation.

The resulting best parameters are used to train each classifier on the entire N − 1

training samples, and the trained classifier finally classifies the test sample. The

process is repeated until all available samples are tested by the trained classifiers. For

local SDA, local NC and k-NN, the neighborhood size is cross-validated on the set

of possible sizes {1, 2, . . . 20, 30 . . . 100, 150, 200}. The PSVM parameters are cross-

validated over the sets of possible values C = {1, 51, . . . 951}, and ε = {0.1, 0.2, . . . 1}.
The class priors are estimated to be the empirical probability of seeing a sample

from each class, with Laplace correction [35]. Table 6.9 shows the percent leave-one-

out error for each classifier evaluated on the protein data set; Table 6.10 shows the

percent leave-one-out error for each classifier evaluated on the voting and sonar echoes

data sets. The benchmark data sets experiments are discussed in more detail in the

following sections.
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Table 6.9: Percentage of leave-one-out misclassifications on the protein data set.

Local SDA Local NC SDA NC k-NN PSVM

8.92 37.09 29.58 41.78 20.66 1.41

Table 6.10: Percentage of leave-one-out misclassifications on the voting and sonar
echoes benchmark data sets.

Local Local SDA NC nnSDA k-NN PSVM

SDA NC

Voting 9.66 8.05 11.72 12.87 12.18 9.20 6.44

Sonar 22 14 16 26 24 18 10

6.2.1 Protein Data

Many bioinformatics prediction problems are formulated in terms of pairwise simi-

larities or dissimilarities. An example is the protein data set used by [30]. For this

data set, pairwise dissimilarity values are calculated using the evolutionary distance,

which is the probability that an amino acid sequence transforms into another one [31].

The sample space B is not enumerated, so classification must be done based only on

the pairwise dissimilarity values. The dataset contains 213 proteins with class labels

“HA” (72 samples), “HB” (72 samples), “M” (39 samples) , and “G” (30 samples).

The SDA, local SDA, nearest centroid, local nearest centroid, and k-NN classifiers

natively support multiclass classification problems, so they can be applied directly to

this four-class experiment. The PSVM, however, is a binary classifier and cannot be

applied directly to this multiclass data set. To compare to the PSVM, this exper-

iment adopts the same standard practice commonly used for binary support vector

classifiers: the PSVM classification problem is cast into four independent one-class-

vs.-the-rest binary classification tasks and the classification rule becomes to classify

as the class which yields the highest of the four resulting support vector margins [50].
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The set of possible similarities Ω is needed to solve for the SDA parameters λ and γ,

but is not directly available, so Ω was approximated as the set of empirical similarities

that occur in the training samples’ similarity matrix.

In this experiment, the PSVM performs best. Guessing that all samples were from

the most prevalent class would yield a 66.2% error rate. The simple one-centroid per

class model of SDA achieves half that error, and works better than the more flexible

local nearest centroid classifier. Local SDA, local nearest centroid and k-NN all have

the same free parameter, the neighborhood size k. Of these, local SDA is seen to be

best suited to this problem.

6.2.2 Voting Data Set

The UCI voting data set [48] records the voting record of 435 members of the US

House of Representatives on 16 bills. The binary classification problem is to predict

each member’s political party affiliation given the voting records. Each of the 16

votes is either a yes, a no, or “neither”, so there are 16 features which can each take

on 3 possible values. This classification problem can be treated as a similarity-based

classification problem by applying a similarity function to the trinary feature space.

The adopted similarity in this experiment is the counting similarity.

6.2.3 Aural Sonar Echoes Classification

In the sonar echoes classification experiment, the data consist of 100 pairwise simi-

larities assessed by human listeners. The listeners rated the pairwise similarities of

digitized active sonar echoes from two classes – clutter or target – without knowledge

of the class labels, and based their evaluation of similarity only on their perceptual

judgement of how the echoes sounded similar; thus, the underlying features of sim-

ilarity are inaccessible. Each listener assigned a discrete similarity value between 1

and 5 to each pair of echoes; each pair was rated by two different listeners, and the

two assigned similarity scores were added, so that the range of possible values for
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the similarity is [2, 10]. The target and clutter classes are equally likely, each one

containing 50 echoes. This set of echoes is particularly difficult to classify in that

metric-space classifiers produced incorrect results. Further details on this data set

are in [55].

For this data set, the PSVM performs best. The local NC and SDA are the best

similarity-based classifiers. It is interesting that the local SDA provides decreased

performance compared to SDA. In this data set the clutter class is very diverse making

the local SDA classifier more prone to high variance estimates than SDA.
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Chapter 7

CONCLUSIONS

This chapter summarizes the contributions of this dissertation in Section 7.1. Some

ideas for further developing similarity-based classification techniques are outlined in

Section 7.2.

7.1 Discussion

The contribution of this dissertation is a new framework for classification that is both

similarity-based and generative: similarity discriminant analysis, or SDA. The experi-

mental results in this dissertation show that the classifiers resulting from the proposed

SDA framework have practical advantages in terms of performance, interpretability,

and ease of use. SDA is similarity-based in that it classifies samples based on their

pairwise similarities and does not require that the samples be described by numerical

feature vectors, the standard sample description method in metric learning. SDA is

generative, in that it estimates probabilistic models based on descriptive statistics

of the classes. Having access to probability estimates is important. A probabilistic

framework seamlessly accommodates multi-class classifiers, asymmetric misclassifica-

tion costs, and class priors. Furthermore, probability estimates are easily fused into

into larger systems, and can be used to identify abnormal samples that have low

probability of any class. The generative models in the SDA family are solutions to

constrained maximum entropy problems where the constraints are placed on the mean

values of the similarity-based descriptive statistics. As dictated by the principle of

maximum entropy, the resulting generative class models are exponential functions of

the similarity statistics.
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Different choices for the descriptive statistics lead to different SDA classifiers. This

dissertation focused on the centroid-based SDA classifiers: each class is described by a

prototypical sample, a centroid, and the generative models are based on the similarities

of the samples to each class centroid. SDA accommodates various definitions of

centroid; this dissertation focused on the maximum-sum-similarity centroid. The

nearest neighbor similarity is also explored as a descriptive statistic, yielding the

nnSDA classifier.

The SDA classifier may be thought of as creating log-linear boundaries between the

classes in a similarity space where each dimension maps a function of the similarity of

a sample to a class centroid. This interpretation is analogous to the standard view of

linear metric-space classifiers, which create linear boundaries in a metric feature space.

Metric-space classifiers such as LDA, QDA, and SVM-type methods, can be applied

to similarity-based classification by using the similarities to the class centroids as the

metric feature vectors. The resulting mathematical expressions for the linear class

boundaries are formally the same as the log-linear boundaries produced by SDA: they

are linear combinations of similarity statistics. However, SDA is more general than

the metric generative classifiers LDA and QDA, as it does not rely on the descriptive

similarity statistics being Gaussian. This assumption limits the applicability of LDA

and QDA to similarity-based classification. Thus the SDA framework gives rise to

a new family of classifiers which can more generally be applied to similarity-based

classification problems.

As with LDA and QDA, the power of the SDA generative classifier depends on

how well its model matches the true class-conditional distributions. A mismatched

model will be biased and produce erroneous classifications. The centroid-based SDA

classifier is a good match for single-centroid distributions of objects, but is a biased

model for multi-centroidal distributions. This dissertation proposes local SDA and

mixture SDA as similarity-based generative classifiers with reduced bias that can be

used for multimodal distributions. Local SDA is the SDA classifier applied to a local
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neighborhood of a test sample. A local class centroid can be viewed as a representative

prototype for the class in the neighborhood of a test sample and the class-conditional

models provide an estimate of the local distribution of the similarities to the local

centroid. Local SDA shown to be a Bayes error-consistent classifier and is the first

classifier to be similarity-based, generative, and local. Mixture SDA builds on the

metric-learning mixture models by modeling each class as a linear combination of

several single-centroid SDA models. The parameters for the mixture SDA classifier

can be estimated with the EM algorithm; the resulting mixture SDA EM algorithm

is shown to maximize the likelihood of the similarities of the samples to the class

centroids.

The family of SDA classifiers is very competitive with, and often outperforms, their

corresponding non-generative similarity-based classifier. SDA competes with nearest

centroid; local SDA competes with local NC. The SDA classifiers are also competi-

tive with the PSVM, the state-of-the-art support vector machine for similarity-based

classification. The PSVM bases its classification on the entire training set of pairwise

similarities. This requires enumeration of size N ×N similarity matrices, thus posing

computational challenges for large data sets. Furthermore, PSVM is a non-generative,

intrinsically binary classifier: it is difficult to view it in probabilistic framework where

there are more than two possible classes for the data samples. The SDA classifiers

remain competitive while relying on more parsimonious representations of the un-

derlying similarity relationships between the samples. Furthermore, the generative

quality of the SDA family of classifiers provides intuitive information about the simi-

larity characteristics of the data. The SDA-generated probability estimates are useful

for interpreting the results in a probabilistic framework, and allow for class priors and

costs to be seamlessly integrated into the classification rules.
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7.2 The Road Ahead

The ideas put forth in this dissertation – generative models for similarity-based clas-

sification – provide the starting point for further investigation of several challenges

in the rich area of similarity-based classification. In this section, ideas for future de-

velopments in mixture SDA and local SDA are presented first. Then, some ideas are

proposed for solving the challenging problem of similarity-based classification when

samples are described by mixed features.

7.2.1 Jointly Estimating the Centroids and the Component Parameters for Mixture

SDA

This dissertation introduced the mixture SDA classifier as a way to reduce the SDA

model bias, in analogy to metric learning mixture models such as GMMs. In the

proposed EM algorithm for mixture SDA, the class centroids are first estimated in a

single step. Then, the other parameters are iteratively estimated while the centroids

are kept constant. A modified mixture SDA EM algorithm that jointly estimates

the class centroids and the component parameters during each iteration can lead to

improved performance. However, the improved class models would only partially

address the ongoing challenge of decreasing estimation variance in mixture models,

which results from the large number of parameters that must be estimated (the num-

ber of components, the relative component weights {w}, the component exponents

{λ} and scaling factors {γ}).

7.2.2 Adaptive Neighborhood Selection for Local SDA

This dissertation proposed the local SDA classifier as a way to make SDA more flexible

and less prone to estimation bias. The innovation in local SDA is that it is the

first classifier that is both local and generative. Local SDA applies SDA to a local

neighborhood of the test sample. In this work, the neighborhood was chosen according
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to the common definition adopted for metric local learning: select the k most similar

samples to the test sample from the training set; the fixed neighborhood size k is

cross-validated. A key question that has hardly been researched is “which similar

examples?” That is, when applying a local learning algorithm (be it nearest neighbors,

local SDA, etc.), how should one choose the neighborhood? The standard answer is

to choose some fixed number of neighbors k, where k is chosen by cross-validation.

This is not a satisfying approach because cross-validation can lead to high estimation

variance, and is theoretically based on the often untrue assumption that training and

test samples are independent and identically distributed. Also, the assumption that

every test sample should be learned from the same number k of neighbors may not

be generally true. Research into methods to choose optimal neighborhoods for local

similarity-based learning can produce improved versions of the local SDA classifier.

Recent work by Gupta et al. has advanced the field of defining adaptive neigh-

borhoods given Euclidean features [12, 24]. An ideal neighborhood method would

automatically adaptively determine the number of samples and which samples to in-

clude in the neighborhood. For example, Nock et al. [51] defined the neighborhood

for a test sample to be its nearest neighbor, and all training samples for which the

test sample is the nearest neighbor. Another automatically spatially-adaptive neigh-

borhood definition is Sibson’s natural neighbors [52, 65]. The natural neighbors are

defined by the Voronoi tessellation V of the training set and test point x. Given V ,

the natural neighbors of x are defined to be those training points zi whose Voronoi

cells are adjacent to the cell containing x. Natural neighbors is an effective neigh-

borhood for linear interpolation in two and three dimensions [52, 65]. However, to

find the natural neighbors the entire Voronoi tessellation must be computed, which

is computationally problematic in higher dimensions [3].

To guide the design and analysis of neighborhood algorithms, one could investigate

design goals that relate to minimizing estimation error. One design goal is that

asymptotically as n → ∞, the neighborhood size k → ∞ and k/n → 0. This design
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goal is important for the algorithm to asymptotically achieve the Bayes’ error [15,70].

The local SDA classifier was shown to satisfy this design goal in Chapter 4 for the

neighborhood defined by the k most similar samples to the test sample. Researchers

in ranking have proposed that the top ranked neighbors should be both similar to

the test sample (affinity) but also different from each other (diversity) [81]. These

design goals can be useful in guiding future research into defining neighborhoods for

similarity-based learning, and that high affinity can keep estimation bias low, and

high diversity can reduce estimation variance.

Related to the goal of diverse neighbors, Gupta defined the term enclosing neigh-

borhood for neighborhood definitions for Euclidean features where the test sample is

contained in the convex hull of its neighborhood if possible [22]. For example, one

can show that the natural neighbors described above are an enclosing neighborhood.

Gupta et al. proved that using an enclosing neighborhood results in a bounded es-

timation variance for local linear regression of a noisy linear function with additive

Gaussian noise [12, 24]. To satisfy the design goals of affinity and diversity, they

proposed the enclosing k-NN neighborhood to be the smallest k such that the k neigh-

bors enclosed a test sample (or adding an additional neighbor does not decrease the

distance from the test sample to the convex hull of its neighborhood). They also

investigated an inclusive version of the natural neighbors such that the neighborhood

includes all training samples closer than the furthest natural neighbor [12,24].

7.2.3 Weighting Nearest Neighbors for Local SDA

The local SDA classifier proposed in this dissertation bases its local generative models

on a local neighborhood of a test sample x. The training samples within the neigh-

borhood equally contribute to the constraints on the mean local similarities (3.4) and

equally affect the choice of the local centroid (2.10). The equal importance of the

neighbors implicitly assigns uniform weights to their similarities to the test sample

x. Adaptively weighting the similarity of a test sample to its neighbors can provide



98

improved classification power and deeper insight into the similarity relationships of

the data. Recent progress in weighting strategies for metric nearest neighbor learning

can guide future research into adaptive weights for similarity-based local learning.

Weighted k-NN assigns weight wi to the training sample pair zi and its corre-

sponding class label yi, where the weights are normalized such that
∑

i wi = 1 and

the test sample x is classified as the class assigned the most weight. The design

goals of affinity and diversity that can guide neighborhood selection can also guide

the definition of novel weighting schemes for the neighbors. An intuitive approach

to weighting nearest neighbors is to give larger weight to neighbors that are more

similar to the test sample. This is the design goal of affinity, which states that wi

should be an increasing function of s(x, zi). For example, affinity can be satisfied

by wi = γs(z, xi), where γ is a normalization term. However, it was recently shown

that such weighted nearest-neighbor classifiers can have severe bias problems given

finite training samples due to changes in the class-conditional distributions in the

neighborhood of the test sample [25]. An extreme example of this problem happens

with repeated training samples. For example, when learning from web data, the same

story originating from a news source can appear on multiple web pages. As a spe-

cific illustration of the problem, consider the case of ten training samples, all equally

similar to the test sample, but seven of the training samples are repeats, or highly

similar to each other. Uniform weighting or weights that were only a function of the

{s(x, zi)} would cause the seven repeated samples to receive 7/10 of the weight, and

might bias the classification. This problem of correlated or highly similar training

examples leads to the diversity design goal for weighting nearest-neighbors: wi and

wj should be decreasing functions of s(zi, zj). These two goals are similar to goals in

ranking [81].
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7.2.4 Defining Similarity given Heterogeneous Features for the Purpose of Learning

The choice of similarity measure is an important aspect of similarity-based classifica-

tion. For example, [13] found that using nearest neighbors with a modified version of

the value difference metric [68] resulted in generally lower error rates than using Ham-

ming distance (termed “overlap metric” in their paper). Section 2.1 described several

ways to define similarity. Among them is the recently proposed residual entropy simi-

larity sre(x, z) [10], defined in (2.5). Based on both set theory and information theory,

the residual entropy similarity strongly captures context in assessing the similarity

between samples by measuring the residual entropy in a random sample R. In the

context of the random sample R, two rarely occurring samples x and z that share

many features are judged more similar than more-frequently occurring samples: their

features specify the random sample R with more certainty, and thus the residual

entropy in R is lower for more uniquely similar samples.

Similarity functions that are information theoretic and/or set theoretic can be

useful for learning from heterogeneous (or mixed) data. These similarity functions

often require estimating the probabilities of different types of features (numerical,

categorical, discrete, etc.), and estimating such probabilities from a small set of given

training data is a difficult problem that can significantly affect their utility for learning.

There are many open research questions about the interplay between similarity-based

classifiers and similarity measures. A possible future research direction is exploring

how to use different set-theoretic and information-theoretic similarity functions for

similarity-based learning, with particular focus on the difficult case of small training

sets.

7.2.5 Generative Classifiers for Mixed Features

An effective way to classify samples described by heterogeneous features is to build

mixed models that combine traditional Euclidean feature space-based probability
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models with similarity-based models. One solution to this is use mixtures of naive

Bayes models, as proposed by Lowd and Domingos [42]. To make their solution work

for mixed features, they quantized all Euclidean features to five quantization levels,

then treated it as a categorical variable. Section 3.4 discussed a different approach

which mixes Euclidean-space and similarity-space generative models. A research chal-

lenge will be estimating the parameters for these generative models which often require

estimating many parameters. In particular, based on the success of Bayesian and reg-

ularization techniques [5, 27] and on the recent work by Srivastava et al. in Bayesian

estimation for Gaussian generative models [67], Bayesian approaches can provide a

practical method for regularization.

7.2.6 Weighting Nearest-Neighbors Given Mixed Features

Given some Euclidean features, basing nearest-neighbor weightings only on similar-

ities may not be as effective as explicitly using the information in the Euclidean

features. One approach would be to combine the weights based on the similarities

with the weights based on the Euclidean features (using, for example, weights formed

by local linear regression [27, 70] or by LIME). This approach poses the question of

how to combine the weights. An effective way to solve for weights is to formulate

weights to minimize first-order error or satisfy appropriate design goals [23,26].
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