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Abstract

This paper reviews and extends the field of similarity-basedclassification, presenting new analy-
ses, algorithms, data sets, and a comprehensive set of experimental results for a rich collection of
classification problems. Specifically, the generalizability of using similarities as features is ana-
lyzed, design goals and methods for weighting nearest-neighbors for similarity-based learning are
proposed, and different methods for consistently converting similarities into kernels are compared.
Experiments on eight real data sets compare eight approaches and their variants to similarity-based
learning.
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1. Introduction

Similarity-based classifiers estimate the class label of a test sample based on thesimilarities between
the test sample and a set of labeled training samples, and the pairwise similarities between the
training samples. Like others, we use the termsimilarity-based classificationwhether the pairwise
relationship is a similarity or dissimilarity. Similarity-based classification does not require direct
access to the features of the samples, and thus the sample space can be anyset, not necessarily a
Euclidean space, as long as the similarity function is well defined for any pairof samples. LetΩ
be the sample space andG be the finite set of class labels. Letψ : Ω×Ω → R be the similarity
function. We assume that the pairwise similarities betweenn training samples are given as ann×n
similarity matrixSwhose(i, j)-entry isψ(xi ,x j), wherexi ∈ Ω, i = 1, . . . ,n, denotes theith training
sample, andyi ∈ G , i = 1, . . . ,n the correspondingith class label. The problem is to estimate the
class label ˆy for a test samplex based on its similarities to the training samplesψ(x,xi), i = 1, . . . ,n
and its self-similarityψ(x,x).
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Similarity-based classification is useful for problems in computer vision, bioinformatics, infor-
mation retrieval, natural language processing, and a broad range of other fields. Similarity functions
may be asymmetric and fail to satisfy the other mathematical properties required for metrics or inner
products (Santini and Jain, 1999). Some simple example similarity functions are: travel time from
one place to another, compressibility of one random process given a code built for another, and the
minimum number of steps to convert one sequence into another (edit distance). Computer vision
researchers use many similarities, such as the tangent distance (Duda et al., 2001), earth mover’s
distance (EMD) (Rubner et al., 2000), shape matching distance (Belongieet al., 2002), and pyramid
match kernel (Grauman and Darrell, 2007) to measure the similarity or dissimilaritybetween im-
ages in order to do image retrieval and object recognition. In bioinformatics, the Smith-Waterman
algorithm (Smith and Waterman, 1981), the FASTA algorithm (Lipman and Pearson, 1985) and
the BLAST algorithm (Altschul et al., 1990) are popular methods to compute thesimilarity be-
tween different amino acid sequences for protein classification. The cosine similarity between term
frequency-inverse document frequency (tf-idf) vectors is widely used in information retrieval and
text mining for document classification.

Notions of similarity appear to play a fundamental role in human learning, and thus psycholo-
gists have done extensive research to model human similarity judgement. Tversky’scontrast model
andratio model(Tversky, 1977) represent an important class of similarity functions. Inthese two
models, each sample is represented by a set of features, and the similarity function is an increasing
function of set overlap but a decreasing function of set differences. Tversky’s set-theoretic similar-
ity models have been successful in explaining human judgement in various similarity assessment
tasks, and are consistent with the observations made by psychologists thatmetrics do not account
for cognitive judgement of similarity in complex situations (Tversky, 1977; Tversky and Gati, 1982;
Gati and Tversky, 1984). Therefore, similarity-based classification maybe useful for imitating or
understanding how humans categorize.

The main contributions of this paper are: (1) we distill and analyze conceptsand issues specific
to similarity-based learning, including the generalizability of using similarities as features, (2) we
propose similarity-based nearest-neighbor design goals and methods, and (3) we present a compre-
hensive set of experimental results for eight similarity-based learning problems and eight different
similarity-based classification approaches and their variants. First, we discuss the idea of similari-
ties as inner products in Section 2, then the concept of treating similarities as features in Section 3.
The generalizability of using similarities as features and that of using similarities as kernels are
compared in Section 4. In Section 5, we propose design goals and solutionsfor similarity-based
weighted nearest-neighbor learning. Generative similarity-based classifiers are discussed in Sec-
tion 6. Then in Section 7 we describe eight similarity-based classification problems, detail our
experimental setup, and discuss the results. The paper concludes with some open questions in Sec-
tion 8. For the reader’s reference, key notation is summarized in Table 1.

2. Similarities as Inner Products

A popular approach to similarity-based classification is to treat the given similarities as inner prod-
ucts in some Hilbert space or to treat dissimilarities as distances in some Euclideanspace. This
approach can be roughly divided into two categories: one is to explicitly embed the samples in a
Euclidean space according to the given (dis)similarities using multidimensional scaling (see Borg
and Groenen, 2005, for further reading); the other is to modify the similarities to be kernels and
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Ω sample space S n×n matrix with (i, j)-entryψ(xi ,x j )
G set of class labels si n×1 vector with jth elementψ(xi ,x j )
n number of training samples s n×1 vector with jth elementψ(x,x j )
xi ∈ Ω ith training sample 1 column vector of 1’s
x∈ Ω test sample I identity matrix
yi ∈ G class label ofith training sample I{·} indicator function
y∈ Gn n×1 vector withith elementyi K kernel matrix or kernel function
ŷ∈ G estimated class label forx k neighborhood size
D n training sample pairs{(xi ,yi)}n

i=1 L hinge loss function
ψ : Ω×Ω → R similarity function diag(a) diagonal matrix witha as the diagonal

Table 1: Key Notation

apply kernel classifiers. We discuss different methods for modifying similarities into kernels in
Section 2.1. An important technicality is how to handle test samples, which is addressed in Sec-
tion 2.2.

2.1 Modify Similarities into Kernels

The power of kernel methods lies in the implicit use of a reproducing kernelHilbert space (RKHS)
induced by a positive semidefinite (PSD) kernel (Schölkopf and Smola, 2002). Although the mathe-
matical meaning of a kernel is the inner product in some Hilbert space, a standard interpretation of a
kernel is the pairwise similarity between different samples. Conversely, many researchers have sug-
gested treating similarities as kernels, and applying any classification algorithmthat only depends
on inner products. Using similarities as kernels eliminates the need to explicitly embed the samples
in a Euclidean space.

Here we focus on the support vector machine (SVM), which is a well-known representative of
kernel methods, and thus appears to be a natural approach to similarity-based learning. All the SVM
algorithms that we discuss in this paper are for binary classification1 such thatyi ∈ {±1}. Let y be
then×1 vector whoseith element isyi . The SVM dual problem can be written as

maximize
α

1Tα− 1
2

αT diag(y)K diag(y)α

subject to 0� α �C1, yTα = 0,
(1)

with variableα∈R
n, whereC> 0 is the hyperparameter,K is a PSD kernel matrix whose(i, j)-entry

is K(xi ,x j), 1 is the column vector with all entries one, and� denotes component-wise inequality
for vectors. The corresponding decision function is Schölkopf and Smola (2002)

ŷ = sgn

(
n

∑
i=1

αiyiK(x,xi)+b

)
,

where

b = yi −
n

∑
j=1

α jy jK(xi ,x j)

for any i that satisfies 0< αi < C. The theory of RKHS requires the kernel to satisfy Mercer’s
condition, and thus the corresponding kernel matrixK must be PSD. However, many similarity

1. We refer the reader to Hsu and Lin (2002) for multiclass SVM.
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functions do not satisfy the properties of an inner product, and thus the similarity matrix S can
be indefinite. In the following subsections we discuss several methods to modify similarities into
kernels; a previous review can be found in Wu et al. (2005). Unless mentioned otherwise, in the
following subsections we assume thatS is symmetric. If not, we use its symmetric part1

2

(
S+ST

)

instead. Notice that the symmetrization does not affect the SVM objective function in (1) since
αT 1

2

(
S+ST

)
α = 1

2αTSα+ 1
2αTSTα = αTSα.

2.1.1 INDEFINITE KERNELS

One approach is to simply replaceK with S, and ignore the fact thatS is indefinite. For example,
although the SVM problem given by (1) is no longer convex whenSis indefinite, Lin and Lin (2003)
show that the sequential minimal optimization (SMO) (Platt, 1998) algorithm will still converge
with a simple modification to the original algorithm, but the solution is a stationary pointinstead of
a global minimum. Ong et al. (2004) interpret this as finding the stationary pointin a reproducing
kernel Krĕın space (RKKS), while Haasdonk (2005) shows that this is equivalent tominimizing the
distance between reduced convex hulls in a pseudo-Euclidean space. AKrĕın space, denoted byK ,
is defined to be the direct sum of two disjoint Hilbert spaces, denoted byH+ andH−, respectively.
So for anya,b∈ K = H+ ⊕H−, there are uniquea+,b+ ∈ H+ and uniquea−,b− ∈ H− such that
a = a+ +a− andb = b+ +b−. The “inner product” onK is defined as

〈a,b〉K = 〈a+,b+〉H+
−〈a−,b−〉H− ,

which no longer has the property of positive definiteness. Pseudo-Euclidean space is a special case
of Krĕın space whereH+ andH− are two Euclidean spaces. Ong et al. (2004) provide a representer
theorem for RKKS that poses learning in RKKS as a problem of finding a stationary point of the
risk functional, in contrast to minimizing a risk functional in RKHS. Using indefinite kernels in
empirical risk minimization (ERM) methods such as SVM can lead to a saddle point solution and
thus does not ensure minimizing the risk functional, so this approach does not guarantee learning
in the sense of a good function approximation. Also, the nonconvexity of theproblem may require
intensive computation.

2.1.2 SPECTRUMCLIP

SinceS is assumed to be symmetric, it has an eigenvalue decompositionS= UTΛU , whereU is
an orthogonal matrix andΛ is a diagonal matrix of real eigenvalues, that is,Λ = diag(λ1, . . . ,λn).
Spectrum clip makesS PSD by clipping all the negative eigenvalues to zero. Some researchers
assume that the negative eigenvalues of the similarity matrix are caused by noise and view spectrum
clip as a denoising step (Wu et al., 2005). Let

Λclip = diag(max(λ1,0), . . . ,max(λn,0)) ,

and the modified PSD similarity matrix beSclip = UTΛclipU . Let ui denote theith column vector of

U . UsingSclip as a kernel matrix for training the SVM is equivalent to implicitly usingxi = Λ1/2
clipui

as the representation of theith training sample since〈xi ,x j〉 is equal to the(i, j)-entry of Sclip. A
mathematical justification for spectrum clip is thatSclip is the nearest PSD matrix toS in terms of
the Frobenius norm (Higham, 1988), that is,

Sclip = argmin
K�0

‖K−S‖F ,
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where� denotes the generalized inequality with respect to the PSD cone.
Recently, Luss and d’Aspremont (2007) have proposed a robust extension of SVM for indefinite

kernels. Instead of only considering the nearest PSD matrixSclip, they consider all the PSD matrices
within distanceβ to S, that is,{K � 0 | ‖K −S‖F ≤ β}, whereβ > minK�0‖K −S‖F , and propose
to maximize the worst case of the SVM dual objective among these matrices:

maximize
α

min
K�0,‖K−S‖F≤β

(
1Tα− 1

2
αT diag(y)K diag(y)α

)

subject to 0� α �C1, yTα = 0.

This model is more flexible in the sense that the set of possibleK in the hypothesis space lies in a
ball with radiusβ centered aroundS. Different draws of training samples will change the candidate
set ofK and could cause overfitting. In practice, they replace the hard constraint ‖K−S‖F ≤ β with
a penalty term and propose the following problem as the robust SVM forS:

maximize
α

min
K�0

(
1Tα− 1

2
αT diag(y)K diag(y)α+ρ‖K−S‖2

F

)

subject to 0� α �C1, yTα = 0,

(2)

whereρ > 0 is the parameter to control the trade-off. They point out that the inner problem of (2) has
a closed-form solution, and the outer problem is convex since its objectiveis a pointwise minimum
of a set of concave quadratic functions ofα and thus concave. A fast algorithm to solve (2) is given
by Chen and Ye (2008).

2.1.3 SPECTRUMFLIP

In contrast to the interpretation that negative eigenvalues are caused bynoise, Laub and M̈uller
(2004) and Laub et al. (2006) show that the negative eigenvalues of some similarity data can code
useful information about object features or categories, which agreeswith some fundamental psy-
chological studies (Tversky and Gati, 1982; Gati and Tversky, 1982). In order to use the negative
eigenvalues, Graepel et al. (1998) propose an SVM in pseudo-Euclidean space, and Pekalska et al.
(2001) also consider a generalized nearest mean classifier and Fisherlinear discriminant classifier
in the same space. Following the notation in Section 2.1.1, they assume that the samples lie in a
Krĕın spaceK = H+ ⊕H− with similarities given byψ(a,b) = 〈a+,b+〉H+

−〈a−,b−〉H− . These
proposed classifiers are their standard versions in the Hilbert spaceH = H+ ⊕H− with associated
inner product〈a,b〉H = 〈a+,b+〉H+

+ 〈a−,b−〉H− . This is equivalent to flipping the sign of the neg-
ative eigenvalues of the similarity matrixS: let Λflip = diag(|λ1|, . . . , |λn|), and then the similarity
matrix after spectrum flip isSflip =UTΛflipU . Wu et al. (2005) note that this is the same as replacing
the original eigenvalues ofSwith its singular values.

2.1.4 SPECTRUMSHIFT

Spectrum shift is another popular approach to modifying a similarity matrix into a kernel matrix:
sinceS+λI = UT(Λ+λI)U , any indefinite similarity matrix can be made PSD by shifting its spec-
trum by the absolute value of its minimum eigenvalue|λmin(S)|. LetΛshift = Λ+ |min(λmin(S),0)| I ,
which is used to form the modified similarity matrixSshift = UTΛshiftU . Compared with spectrum
clip and flip, spectrum shift only enhances all the self-similarities by the amount of |λmin(S)| and
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does not change the similarity between any two different samples. Roth et al.(2003) propose spec-
trum shift for clustering nonmetric proximity data and show thatSshift preserves the group structure
of the original data represented byS. Let X be the set of samples to cluster, and{Xℓ}N

ℓ=1 be a
partition ofX into N sets. Specifically, they consider minimizing the clustering cost function2

f
(
{Xℓ}N

ℓ=1

)
= −

N

∑
ℓ=1

∑
i, j∈Xℓ

i 6= j

ψ(xi ,x j)

|Xℓ|
, (3)

where|Xℓ| denotes the cardinality of setXℓ. It is easy to see that (3) is invariant under spectrum
shift.

Recently, Zhang et al. (2006) proposed training an SVM only on thek-nearest neighbors of each
test sample, called SVM-KNN. They used spectrum shift to produce a kernel from the similarity
data. Their experimental results on image classification demonstrated that SVM-KNN performs
comparably to a standard SVM classifier, but with significant reduction in training time.

2.1.5 SPECTRUMSQUARE

The fact thatSST � 0 for anyS∈ R
n×n led us to consider usingSST as a kernel, which is valid

even whenS is not symmetric. For symmetricS, this is equivalent to squaring its spectrum since
SST = UTΛ2U . It is also true that usingSST is the same as defining a new similarity functionψ̃ for
anya,b∈ Ω as

ψ̃(a,b) =
n

∑
i=1

ψ(a,xi)ψ(xi ,b).

We note that for symmetricS, treatingSST as a kernel matrixK is equivalent to representing each
xi by its similarity feature vectorsi =

[
ψ(xi ,x1) . . . ψ(xi ,xn)

]T
sinceKi j = 〈si ,sj〉. The concept

of treating similarities as features is discussed in more detail in Section 3.

2.2 Consistent Treatment of Training and Test Samples

Consider a test samplex that is the same as a training samplexi . Then if one uses an ERM clas-
sifier trained with modified similarities̃S, but uses the unmodified test similarities, represented by
vectors =

[
ψ(x,x1) . . . ψ(x,xn)

]T
, the same sample will be treated inconsistently. In general,

one would like to modify the training and test similarities in a consistent fashion, that is, to modify
the underlying similarity function rather than only modifying theS. In this context, givenS and
S̃, we term a transformationT on test samplesconsistentif T(si) is equal to theith row of S̃ for
i = 1, . . . ,n.

One solution is to modify the training and test samples all at once. However, when test samples
are not known beforehand, this may not be possible. For such cases,Wu et al. (2005) proposed to
first modifySand train the classifier using the modifiedn×n similarity matrixS̃, and then for each
test sample modify itss in an effort to be consistent with the modified similarities used to train the
model. Their approach is to re-compute the same modification on the augmented(n+1)× (n+1)
similarity matrix

S′ =

[
S s
sT ψ(x,x)

]

2. They originally use dissimilarities in their cost function, and we reformulate it into similarities with the assumption
that the relationship between dissimilarities and similarities is affine.

752



SIMILARITY -BASED CLASSIFICATION

to form S̃′, and then let the modified test similarities ˜s be the firstn elements of the last column of
S̃′. The classifier that was trained onS̃ is then applied on ˜s. To implement this approach, Wu et al.
(2005) propose a fast algorithm to perform eigenvalue decomposition ofS′ by using the results of
the eigenvalue decomposition ofS. However, this approach does not guarantee consistency.

To attain consistency, we note that both the spectrum clip and flip modifications can be rep-
resented by linear transformations, that is,S̃= PS, whereP is the corresponding transformation
matrix, and we propose to apply the same linear transformationP on s such that ˜s= Ps. For spec-
trum flip, the linear transformation isPflip = UTMflipU , where

Mflip = diag(sgn(λ1), . . . ,sgn(λn)) .

For spectrum clip, the linear transformation isPclip = UTMclipU , where

Mclip = diag
(
I{λ1≥0}, . . . , I{λn≥0}

)
,

andI{·} is the indicator function. Recall that using̃S implies embedding the training samples in a
Euclidean space. For spectrum clip, this linear transformation is equivalent to embedding the test
sample as a feature vector into the same Euclidean space of the embedded training samples:

Proposition 1 Let Sclip be the Gram matrix of the column vectors of X∈R
m×n, whererank(X) = m.

For a given s, let x= argminz∈Rm‖XTz−s‖2, then XTx = Pclips.

The proof is in the appendix.
Proposition 1 states that if then training samples are embedded inR

m with Sclip as the Gram
matrix, and we embed the test sample inR

m by finding the feature vector whose inner products
with the embedded training samples are closest to the givens, then the inner products between the
embedded test sample and the embedded training samples are indeed ˜s= Pclips.

On the other hand, there is no linear transformation to ensure consistency for spectrum shift.
For our experiments using spectrum shift, we adopt the approach of Wu et al. (2005), which for this
case is to let ˜s= s, because spectrum shift only affects self-similarities.

3. Similarities as Features

Similarity-based classification problems can be formulated into standard learning problems in Eu-
clidean space by treating the similarities between a samplex and then training samples as features
(Graepel et al., 1998, 1999; Pekalska et al., 2001; Pekalska and Duin, 2002; Liao and Noble, 2003).
That is, represent samplex by the similarity feature vectors. As detailed in Section 4, the gener-
alizability analysis yields different results for using similarities as features and using similarities as
inner products.

Graepel et al. (1998) consider applying a linear SVM on similarity feature vectors by solving
the following problem:

minimize
w,b

1
2
‖w‖2

2 +C
n

∑
i=1

L(wTsi +b,yi) (4)

with variablesw ∈ R
n, b ∈ R and hyperparameterC > 0, whereL(α,β) , max(1−αβ,0) is the

hinge loss function. Liao and Noble (2003) also propose to apply an SVM on similarity feature
vectors; they use a Gaussian radial basis function (RBF) kernel.
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In order to make the solutionw sparser, which helps ease the computation of the discriminant
function f (s) = wTs+b, Graepel et al. (1999) substitute theℓ1-norm regularization for the squared
ℓ2-norm regularization in (4), and propose a linear programming (LP) machine:

minimize
w,b

‖w‖1 +C
n

∑
i=1

L(wTsi +b,yi). (5)

Balcan et al. (2008a) provide a theoretical analysis for using similarities asfeatures, and show
that if a similarity is good in the sense that the expected intraclass similarity is sufficiently large
compared to the expected interclass similarity, then givenn training samples, there exists a linear
separator on the similarities as features that has a specifiable maximum error at a margin that de-
pends onn. Specifically, Theorem 4 in Balcan et al. (2008a) gives a sufficient condition on the
similarity functionψ for (4) to achieve good generalization. Their latest results forℓ1-margin (in-
versely proportional to‖w‖1) provide similar theoretical guarantees for (5) (Balcan et al., 2008b,
Theorem 11). Wang et al. (2007) show that under slightly less restrictive assumptions on the simi-
larity function there exists with high probability a convex combination of simple classifiers on the
similarities as features which has a maximum specifiable error.

Another approach is the potential support vector machine (P-SVM) (Hochreiter and Obermayer,
2006; Knebel et al., 2008), which solves

minimize
α

1
2
‖y−Sα‖2

2 + ε‖α‖1

subject to ‖α‖∞ ≤C,
(6)

whereC > 0 andε > 0 are two hyperparameters. We note that by strong duality (6) is equivalent to

minimize
α

1
2
‖y−Sα‖2

2 + ε‖α‖1 + γ‖α‖∞ (7)

for someγ > 0. One can see from (7) that P-SVM is equivalent to the lasso regression (Tibshirani,
1996) with an extraℓ∞-norm regularization term. The use of multiple regularization terms in P-
SVM is similar to the elastic net (Zou and Hastie, 2005), which usesℓ1 and squaredℓ2 regularization
together.

The algorithms above minimize the empirical risk with regularization. In addition, Pekalska et
al. consider generative classifiers for similarity feature vectors; they propose a regularized Fisher
linear discriminant classifier (Pekalska et al., 2001) and a regularized quadratic discriminant classi-
fier (Pekalska and Duin, 2002).

We note that treating similarities as features may not capture discriminative information if there
is a large intraclass variance compared to the interclass variance, even if the classes are well-
separated. A simple example is if the two classes are generated by Gaussian distributions with
highly-ellipsoidal covariances, and the similarity function is taken to be a negative linear function
of the distance.

4. Generalization Bounds of Similarity SVM Classifiers

To investigate the generalizability of SVM classifiers using similarities, we analyze two forms of
SVMs: using similarity as a kernel as discussed in Section 2, and a linear SVMusing the similarities
as features as given by (4). When similarities are used as features, we show that good generalization
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performance can be achieved by training the SVM on a small subset ofm (< n) randomly selected
training examples, and we compare this to the established analysis for the kernelized SVM.

The SVM learns a discriminant functionf (s) = wTs+b by minimizing the empirical risk

R̂D( f ,L) =
1
n

n

∑
i=1

L( f (si),yi),

whereD denotes the training set, subject to some smoothness constraintN , that is,

minimize
f

R̂D( f ,L)+λnN ( f ),

whereλn = 1
2nC. We note that using (arbitrary) similarities as features corresponds to settingN ( f )=

wTw, while using (PSD) similarities as a kernel changes the smoothness constraint toN ( f ) = wTSw
(Rifkin, 2002, Appendix B), and in fact, this change of regularizer is theonly difference between
these two similarity-based SVM approaches. In this section, we examine how this small change in
regularization affects the generalization ability of the classifiers.

To simplify the following analysis, we do not directly investigate the SVM classifier as pre-
sented; instead, as is standard in SVM learning theory, we investigate the following constrained
version of the problem:

minimize
f

R̂D( f ,Lt)

subject to N ( f ) ≤ β2,
(8)

with truncated hinge lossLt , min(L,1) ∈ [0,1] and f (s) = wTsstripped of the interceptb.
The following generalization bound for the SVM using (PSD) similarities3 as a kernel follows

directly from the results in Bartlett and Mendelson (2002).

Theorem 1 (Generalization Bound of Similarities as Kernel) Suppose (x,y) and D =
{(xi ,yi)}n

i=1 are drawn i.i.d. from a distribution onΩ×{±1}. Let ψ be a positive definite simi-
larity such thatψ(a,a)≤ κ2 for someκ > 0 and all a∈ Ω. Let S be the n×n matrix with(i, j)-entry
ψ(xi ,x j) and s be the n×1 vector with ith elementψ(x,xi). Define FS to be the set of real-valued
functions

{
f (s) = wTs

∣∣wTSw≤ β2
}

for a finiteβ. Then with probability at least1−δ with respect
toD, every function f in FS satisfies

P(y f(s) ≤ 0) ≤ R̂D( f ,Lt)+4βκ
√

1
n

+

√
ln(2/δ)

2n
.

The proof is in the appendix.
Theorem 1 says that with high probability, asn→∞, the misclassification rate is tightly bounded

by the empirical riskR̂D( f ,Lt), implying that a discriminant function trained by (8) withN ( f ) =
wTSwgeneralizes well to unseen data.

Next, we state a weaker result in Theorem 2 for the SVM using (arbitrary) similarities as fea-
tures. Let the features be the similarities tom(< n) prototypes{(x̃1, ỹ1), . . . ,(x̃m, ỹm)}⊆D randomly
chosen from the training set so that ˜s is them×1 vector withith elementψ(x, x̃i). Results will be
obtained on the remainingn−m training dataD̃ =D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)}.

3. If the original similarities are not PSD, then they must be modified to be PSD before this result applies; see Section 2
for a discussion of common PSD modifications.
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Theorem 2 (Generalization Bound of Similarities as Features)Suppose (x,y) and D =
{(xi ,yi)}n

i=1 are drawn i.i.d. from a distribution onΩ ×{±1}. Let ψ be a similarity such that
ψ(a,b) ≤ κ2 for someκ > 0 and all a,b∈ Ω. Let{(x̃1, ỹ1), . . . ,(x̃m, ỹm)} ⊆D be a set of randomly
chosen prototypes, and denotẽD = D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)}. Let s̃ be the m×1 vector with ith
elementψ(x, x̃i). Define FI to be the set of real-valued functions

{
f (s̃) = wT s̃

∣∣wTw≤ β2
}

for a

finite β. Then with probability at least1−δ with respect tõD, every function f in FI satisfies

P(y f(s) ≤ 0) ≤ R̂
D̃

( f ,Lt)+4βκ2

√
m
n

+

√
ln(2/δ)

2n
.

The proof is in the appendix.
Theorem 2 only differs significantly from Theorem 1 in the term

√
m/n, which means that if

m, the number of prototypes used, grows no faster thano(n), then with high probability, asn→ ∞,
the misclassification rate is tightly bounded by the empirical risk on the remaining training set
R̂
D̃

( f ,Lt). Note that Theorem 2 is unable to claim anything about the generalization when m= n,
that is, the entire training set is chosen as prototypes. For a further discussion, see the appendix.

5. Similarity-based Weighted Nearest-Neighbors

In this section, we consider design goals and propose solutions for weighted nearest-neighbors for
similarity-based classification. Nearest-neighbor learning is the algorithmic parallel of theexemplar
model of human learning (Goldstone and Kersten, 2003). Weighted nearest-neighbor algorithms are
task-flexible because the weights on the neighbors can be used as probabilities as long as they are
non-negative and sum to one. For classification, such weights can be summed for each class to form
posteriors, which is helpful for use with asymmetric misclassification costs andwhen the similarity-
based classifier is a component of a larger decision-making system. As a lazy learning method,
weighted nearest-neighbor classifiers do not require training before the arrival of test samples. This
can be advantageous to certain applications where the amount of training data is huge, or there are
a large number of classes, or the training data is constantly evolving.

5.1 Design Goals for Similarity-based Weightedk-NN

In this section, for a test samplex, we usexi to denote itsith nearest neighbor from the training set as
defined by the similarity functionψ for i = 1, . . . ,k, andyi to denote the label ofxi . Also, we redefine
Sas thek×k matrix of the similarities between thek-nearest neighbors ands thek×1 vector of the
similarities between the test samplex and itsk-nearest neighbors. For each test sample, weighted
k-NN assigns weightwi to the ith nearest neighbor fori = 1, . . . ,k. Weightedk-NN classifies the
test samplex as the class ˆy that is assigned the most weight,

ŷ = argmax
g∈G

k

∑
i=1

wi I{yi=g}. (9)

It is common to additionally require that the weights be nonnegative and normalized such that the
weights form a posterior distribution over the set of classesG . Then the estimated probability for
classg is ∑k

i=1wi I{yi=g}, which can be used with asymmetric misclassification costs.
An intuitive and standard approach to weighting nearest neighbors is to give larger weight to

neighbors that are more similar to the test sample. Formally, we state:
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Design Goal 1 (Affinity): wi should be an increasing function ofψ(x,xi).

In addition, we propose a second design goal. In practice, some samples inthe training set
are often very similar, for example, a random sampling of the emails by one person may include
many emails from the same thread that contain repeated text due to replies and forwarding. Such
similar training samples provide highly-correlated information to the classifier. In fact, many of the
nearest neighbors may provide very similar information which can bias the classifier. Moreover, we
consider those training samples that are similar to many other training samples lessvaluable based
on the same motivation for tf-idf. To address this problem, one can choose weights to down-weight
highly similar samples and ensure that a diverse set of the neighbors has avoice in the classification
decision. We formalize this goal as:

Design Goal 2 (Diversity): wi should be a decreasing function ofψ(xi ,x j).

Next we propose two approaches to weighting neighbors for similarity-based classification that
aim to satisfy these goals.

5.2 Kernel Ridge Interpolation Weights

First, we describe kernel regularized linear interpolation, and we show that it leads to weights that
satisfy the design goals. Gupta et al. (2006) proposed weights fork-NN in Euclidean space that
satisfy a linear interpolation with maximum entropy (LIME) objective:

minimize
w

∥∥∥∥∥
k

∑
i=1

wixi −x

∥∥∥∥∥

2

2

−λH(w)

subject to
k

∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . ,k,

(10)

with variablew ∈ R
k, whereH(w) = −∑k

i=1wi logwi is the entropy of the weights andλ > 0 is
a regularization parameter. The first term of the convex objective in (10)tries to solve the linear
interpolation equations, which balances the weights so that the test point is best approximated by
a convex combination of the training samples. Additionally, the entropy maximizationpushes the
LIME weights toward the uniform weights.

We simplify (10) to a quadratic programming (QP) problem by replacing the negative entropy
regularization with a ridge regularizer4 wTw, and we rewrite (10) in matrix form:

minimize
w

1
2

wTXTXw−xTXw+
λ
2

wTw

subject to w� 0, 1Tw = 1,

(11)

whereX =
[
x1 x2 · · · xk

]
. Note that (11) is completely specified in terms of the inner products

of the feature vectors:〈xi ,x j〉 and 〈x,xi〉, and thus we term the solution to (11) askernel ridge

4. Due to the constraint1Tw = 1, the ridge regularizer actually regularizes the variance of the weights and thus has
similar effect as the negative entropy regularizer.
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interpolation (KRI) weights. Generalizing from inner products to similarities, we form the KRI
similarity-based weights:

minimize
w

1
2

wTSw−sTw+
λ
2

wTw

subject to w� 0, 1Tw = 1.

(12)

There are three terms in the objective function of (12). Acting alone, the linear term−sTw would
give all the weight to the 1-nearest neighbor. This is prevented by the ridge regularization term
1
2λwTw, which regularizes the variance ofw and hence pushes the weights toward the uniform
weights. These two terms work together to give more weight to the training samples that are more
similar to the test sample, and thus help the resulting weights satisfy the first design goal of reward-
ing neighbors with high affinity to the test sample. The quadratic term in (12) can be expanded as
follows,

1
2

wTSw=
1
2 ∑

i, j

ψ(xi ,x j)wiw j .

From the above expansion, one sees that holding all else constant in (12), the biggerψ(xi ,x j) and
ψ(x j ,xi) are, the smaller the chosenwi andw j will be. Thus the quadratic term tends to down-weight
the neighbors that are similar to each other and acts to achieve the second design goal of spreading
the weight among a diverse set of neighbors.

A sensitivity analysis further verifies the above observations. Letg(w;S,s) be the objective
function of (12), andw⋆ denote the optimal solution. To simplify the analysis, we only consider
w⋆ in the interior of the probability simplex and thus∇g(w⋆;S,s) = 0. We first perturbs by adding
δ > 0 to its ith element, that is, ˜s= s+ δei , whereei denotes the standard basis vector whoseith
element is 1 and 0 elsewhere. Then

∇g(w⋆;S, s̃) = (S+λI)w⋆− s̃= −δei ,

whose projection on the probability simplex is

∇g(w⋆;S, s̃)− 1
k

(
1T∇g(w⋆;S, s̃)

)
1 = δ

(
1
k

1−ei

)
. (13)

The direction of the steepest descent given by the negative of the projected gradient in (13) indicates
that the new optimal solution will have an increasedwi , which satisfies the first design goal.

Similarly, if we instead perturbSby addingδ > 0 to its(i, j)-entry (i 6= j), that is,S̃= S+δEi j ,
whereEi j denotes the matrix with(i, j)-entry 1 and 0 elsewhere, then

∇g(w⋆; S̃,s) = (S̃+λI)w⋆−s= δw⋆
j ei ,

whose projection on the probability simplex is

∇g(w⋆; S̃,s)− 1
k

(
1T∇g(w⋆; S̃,s)

)
1 = δw⋆

j

(
ei −

1
k

1
)

. (14)

The direction of the steepest descent given by the negative of the projected gradient in (14) indicates
that the optimal solution will have a decreasedwi , which satisfies the second design goal.

Experimentally, we found little statistically significant difference between usingnegative en-
tropy or ridge regularization for the KRI weights. Analytically, entropy regularization leads to an
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exponential form for the weights that can be used to prove consistency (Friedlander and Gupta,
2006). Computationally, the ridge regularizer is more practical because it results in a QP with box
constraints and an equality constraint if theSmatrix is PSD or approximated by a PSD matrix, and
can thus be solved by the SMO algorithm (Platt, 1998).

5.2.1 KERNEL RIDGE REGRESSIONWEIGHTS

A closed-form solution to (12) is possible if one relaxes the problem by removing the constraints
wi ∈ [0,1] and∑i wi = 1 that ensure the weights form a probability mass function. Then for PSDS,
the objective1

2wTSw−sTw+ 1
2λwTw is solved by

w = (S+λI)−1s. (15)

The k-NN decision rule (9) using these weights is equivalent to classifying by maximizing the
discriminant of a local kernel ridge regression. For each classg∈ G , local kernel ridge regression
(without intercept) solves

minimize
βg

k

∑
i=1

(
I{yi=g}−〈βg,φ(xi)〉

)2
+λ〈βg,βg〉, (16)

where φ denotes the mapping from the sample spaceΩ to a Hilbert space with inner product
〈φ(xi),φ(x j)〉 = ψ(xi ,x j). Each solution to (16) yields the discriminantfg(x) = 〈βg,φ(x)〉 = νT

g (S+

λI)−1s for classg (Cristianini and Shawe-Taylor, 2000), whereνg =
[
I{y1=g} . . . I{yk=g}

]T
. Max-

imizing fg(x) over g ∈ G produces the same estimated class label as (9) using the weights given
in (15), thus we refer to these weights askernel ridge regression(KRR) weights.

For a non-PSDS, it is possible thatS+λI is singular. In the experiments, we compare handling
non-PSDSby clip, flip, shift, or taking the pseudo-inverse (pinv)(S+λI)†.

5.2.2 ILLUSTRATIVE EXAMPLES

We illustrate the KRI and KRR5 weights with three toy examples shown on the next page. For each
example, there arek = 4 nearest-neighbors, and the KRI and KRR weights are shown for a range of
regularization parameterλ.

In Example 1, affinity is illustrated. One sees froms that the four distinct training samples are
not equally similar to the test sample, and fromS that the training samples have zero similarity to
each other. Both KRI and KRR give more weight to training samples that are more similar to the
test sample, illustrating that the weighting methods achieve the design goal of affinity.

In Example 2, diversity is illustrated. The four training samples all have similarity3 to the test
sample, butx2 andx3 are very similar to each other, and are thus weighted down as prescribed the
by the design goal of diversity. Because of the symmetry of the similarities, theweights forx2 and
x3 are exactly the same for both KRI and KRR.

In Example 3, the interaction between the two design goals is illustrated. TheS matrix is the
same as in Example 2, buts is no longer uniform. In fact, althoughx1 is less similar to the test
sample thanx3, x1 receives more weight because it is less similar to other training samples. The

5. For the purpose of comparison, we show the normalized KRR weights ˜w wherew̃ =
(
I − 1

k11T
)

w+ 1
k1. This does

not affect the result of classification since each weight is shifted by the same constant.
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Example 1: sT =
[
4 3 2 1

]
, S=




5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5




10
−2

10
0

10
2

0

0.1

0.25

0.4

0.5

0.6

λ

w4

w3

w2

w1

10
−2

10
0

10
2

−0.1

0

0.1

0.25

0.4

0.5

0.6

λ

w2

w1

w3

w4

KRI weights KRR weights

Example 2: sT =
[
3 3 3 3

]
, S=




5 1 1 1
1 5 4 2
1 4 5 2
1 2 2 5




10
−2

10
0

10
2

0.15

0.2

0.25

0.3

0.35

0.4

λ

w2, w3

w4

w1

10
−2

10
0

10
2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

λ

w2, w3

w4

w1

KRI weights KRR weights

Example 3: sT =
[
2 4 3 3

]
, S=




5 1 1 1
1 5 4 2
1 4 5 2
1 2 2 5




10
−2

10
0

10
2

0

0.1

0.25

0.4

0.5

0.6

0.7

λ

w1

w3

w4

w2

10
−2

10
0

10
2

−0.4

−0.2

0

0.25

0.4

0.6

0.8

1

λ

w4

w1

w3

w2

KRI weights KRR weights
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affinity goal allots the largest weight to the most similar neighborx2, but becausex2 andx3 are
highly similar, the diversity goal forces them to share weight, resulting inx3 receiving little weight.

One observes from these examples that the KRR weights tend to be smoother than the KRI
weights, because the KRI weights are constrained to a probability simplex, while the KRR weights
are unconstrained.

6. Generative Classifiers

Generative classifiers provide probabilistic outputs that can be easily fused with other probabilistic
information or used to minimize expected misclassification costs. One approach togenerative clas-
sification given similarities is using the similarities as features to define ann-dimensional feature
space, and then fitting standard generative models in that space, as discussed in Section 3. However,
this requires fitting generative models withn data points (or less for class-conditional models) in
an n-dimensional space. Another generative framework for similarity-basedclassification termed
similarity discriminant analysis(SDA) has been proposed that models the class-conditional distri-
butions of similarity statistics (Cazzanti et al., 2008). First we review the basicSDA model, then
consider a local variant (Cazzanti and Gupta, 2007) and a mixture model variant that were both
designed to reduce bias.

Let X denote a random test sample andx denote a realization ofX. Assume that the relevant
information about the class label ofX is captured by a finite setT (X) of M descriptive statistics,
where themth descriptive statistic is denotedTm(X). In this paper, we take the set of descriptive
statistics to be the similarities to class centroids:

T (x) = {ψ(x,µ1),ψ(x,µ2), . . . ,ψ(x,µG)} , (17)

whereµg ∈ Ω is a centroid for thegth class, andG is the number of classes. Although there are
many possible definitions of a centroid given similarities, in this paper a class centroid is defined to
be the training sample that has maximum sum-similarity to the other training samples of its class.
The centroid-based descriptive statistics given by (17) were shown to be overall more effective
than other considered descriptive statistics on simulations and a small set of real-data experiments
(Cazzanti, 2007).

The classification rule for SDA to minimize the expected misclassification cost is: classifyx as
the class

ŷ = argmin
g∈G ∑

h∈G
C(g,h)P(T (x) |Y = h)P(Y = h), (18)

whereC(g,h) is the cost of classifying a sample as classg if the truth is classh.
To estimate the class-conditional distributions{P(T (x) |Y = g)}G

g=1 the SDA model estimates
the expected value of themth descriptive statisticTm(X) with respect to the class conditional distri-
butionP(T (x) |Y = g) to be the average of the training sample data for each classg:

EP(T (x) |g) (Tm(X)) =
1

|Xg| ∑
z∈Xg

Tm(z), (19)

whereXg is the set of training samples from classg. Given theG×G constraints specified by (19),
the SDA model estimates each class-conditional distribution as the solution to (19) with maximum
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entropy, which is the exponential (Jaynes, 1982):

P̂(T (x) |g) =
G

∏
m=1

γgmeλgmTm(x). (20)

Substituting the maximum entropy solution (20) into (18) yields the SDA classification rule: classify
x as the class

ŷ = argmin
g∈G ∑

h∈G
C(g,h)P(Y = h)

G

∏
m=1

γhmeλhmTm(x).

Each pair of parameters(λgm,γgm) can be separately calculated from the constraints given in (19)
by one-dimensional optimization and normalization.

6.1 Reducing SDA Model Bias

The SDA model may not be flexible enough to capture a complicated decision boundary. To address
this model bias issue, one could apply SDA locally to a neighborhood ofk nearest neighbors for
each test point, or learn a mixture SDA model.

In this paper we experimentally compare tolocal SDA(Cazzanti and Gupta, 2007) with local
centroid-similarity descriptive statistics given by (17), in which SDA is appliedto the k nearest
neighbors of a test point, where the parameterk is trained by cross-validation. If any class in the
neighborhood has fewer than three samples, there are not enough datasamples to fit distributions
of similarities, so everyλ is assumed to be zero, and the local SDA model is reduced to a simple
local centroid classifier. Given a discrete set of possible similarities, localSDA has been shown
to be a consistent classifier in the sense that its error converges to the Bayes error under the usual
asymptotic assumption that when the number of training samplesn → ∞, the neighborhood size
k→ ∞ butk grows relatively slowly such thatk/n→ 0 (Cazzanti and Gupta, 2007).

Cazzanti (2007) explored mixture SDA models analogous to Gaussian mixturemodels (GMM).
He fits SDA mixture models, producing the following decision rule:

ŷ = argmin
g∈G ∑

h∈G
C(g,h)P(Y = h)

(
G

∏
m=1

cm

∑
l=1

wgmlγgmle
λgmlψ(x,µml)

)
,

where∑cm
l=1wml = 1, andwml > 0. The number of componentscm are determined by cross-validation.

The component weights{wgml} and the component SDA parameters{(λgml,γgml)} are estimated by
an expectation-maximization (EM) algorithm, analogous to the EM-fitting of a GMM,except that
the centroids are calculated only once (rather than iteratively) at the beginning using ak-medoids
algorithm (Hastie et al., 2001). Simulations and a small set of experiments showed that this mixture
SDA performed similarly to local SDA, but the model training for mixture SDA wasmuch more
computationally intensive.

7. Experiments

We compare eight similarity-based classification approaches: a linear and an RBF SVM using sim-
ilarities as features, the P-SVM (Hochreiter and Obermayer, 2006), a local SVM (SVM-KNN)
(Zhang et al., 2006) and a global SVM using the given similarities as a kernel, local SDA,k-NN,
and the three weightedk-NN methods discussed in Section 5: the proposed KRR and KRI weights,
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and affinity weights as a control, defined bywi = aψ(x,xi), i = 1, . . . ,k, wherea is a normalization
constant. Results are shown in Table 3 and 4.

For algorithms that require a PSDS, we makeS PSD by clip, flip or shift as discussed in
Section 2, and pinv for KRR weights. The results in Table 3 are for clip; the experimental differences
between clip, flip and shift, and pinv are shown in Table 4 and discussed in Section 7.4.

7.1 Data Sets

We tested the proposed classifiers on eight real data sets6 representing a diverse set of similarities
ranging from the human judgement of audio signals to sequence alignment ofproteins.

The Amazon-47data set, created for this paper, consists of 204 books written by 47 authors.
Each book listed onamazon.com links to the top four books that customers bought after viewing it,
along with the percentage of customers who did so. We take the similarity of bookA to book B to
be the percentage of customers who bought B after viewing A, and the classification problem is to
determine the author of the book.

TheAural Sonardata set is from a recent paper which investigated the human ability to distin-
guish different types of sonar signals by ear (Philips et al., 2006). Thesignals were returns from
a broadband active sonar system, with 50 target-of-interest signals and50 clutter signals. Every
pair of signals was assigned a similarity score from 1 to 5 by two randomly chosen human subjects
unaware of the true labels, and these scores were added to produce a 100×100 similarity matrix
with integer values from 2 to 10.

The Caltech-101data set (Fei-Fei et al., 2004) is an object recognition benchmark data set
consisting of 8677 images from 101 object categories. Similarities between images were computed
using the pyramid match kernel (Grauman and Darrell, 2007) on SIFT features (Lowe, 2004). Here,
the similarity is PSD.

TheFace Recdata set consists of 945 sample faces of 139 people from the NIST Face Recog-
nition Grand Challenge data set.7 There are 139 classes, one for each person. Similarities for
pairs of the original three-dimensional face data were computed as the cosine similarity between
integral invariant signatures based on surface curves of the face (Feng et al., 2007). The original
paper demonstrated comparable results to the state-of-the-art using thesesimilarities with a 1-NN
classifier.

TheMirex07data set was obtained from the human-rated, fine-scale audio similarity data used
in the MIREX 2007 Audio Music Similarity and Retrieval8 task. Mirex07 consists of 3090 samples,
divided roughly evenly among 10 classes that correspond to differentmusic genres. Humans judged
how similar two songs are on a 0–10 scale with 0.1 increments. Each song pair was evaluated by
three people, and the three similarity values were averaged. Self-similarity was assumed to be 10,
the maximum similarity. The classification task is to correctly label each song with its genre.

ThePatrol data set was collected by Driskell and McDonald (2008). Members of seven patrol
units were asked to name five members of their unit; in some cases the respondents inaccurately
named people who were not in their unit, including people who did not belong toany unit. Of
the original 385 respondents and named people, only the ones that were named at least once were

6. The data sets along with the randomized partitions are available athttp://idl.ee.washington.edu/
SimilarityLearning/ .

7. For more information, seehttp://face.nist.gov/frgc/ .
8. For more information, seehttp://www.music-ir.org/mirex/2007/index.php/Audio_ Music_Similarity_

and_Retrieval .
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kept, reducing the data set to 241 samples. The similarity between any two people a and b is
(N(a,b)+ N(b,a))/2, whereN(a,b) is the number of times persona names personb. Thus, this
similarity φ has a range{0,0.5,1}. The classification problem is to estimate to which of the seven
patrol units a person belongs, or to correctly place them in an eighth class that corresponds to “not
in any of the units.”

TheProteindata set has sequence-alignment similarities for 213 proteins from 4 classes,9 where
class one through four contains 72, 72, 39, and 30 samples, respectively (Hofmann and Buhmann,
1997). As further discussed in the results, we define an additional similaritytermedRBF-simfor
the Protein data set:ψRBF(xi ,x j) = e−‖s(xi)−s(x j )‖2, wheres(x) is the 213×1 vector of similarities
with mth componentψ(x,xm).

TheVotingdata set comes from the UCI Repository (Asuncion and Newman, 2007). It is a two-
class classification problem with 435 samples, where each sample is a categorical feature vector with
16 components and three possibilities for each component. We compute the value difference metric
(Stanfill and Waltz, 1986) from the categorical data, which is a dissimilarity that uses the training
class labels to weight different components differently so as to achieve maximum probability of
class separation.

Shown in Figure 1 are the similarity matrices of all the data sets. The rows and columns are
ordered by class label; on many of the data sets, particularly those with a fewer number of classes,
a block-diagonal structure is visible along the class boundaries, indicatedby tick marks. Note that
a purely block-diagonal similarity matrix would indicate a particularly easy classification problem,
as objects have nonzero similarity only to objects of the same class.

7.2 Other Experimental Details

For each data set, we randomly selected 20% of the data for testing and usedthe remaining 80%
for training. We chose the classifier parameters such asC for the SVM,λ for the KRI and KRR
weights, andk for local classifiers by 10-fold cross-validation on the training set, and then used
them to classify the held out test data. This process was repeated for 20 random partitions of
test and training data, and the statistical significance of the classification error was computed by a
one-sided Wilcoxon signed-rank test. Multiclass implementations of the SVM classifiers used the
“one-vs-one” scheme (Hsu and Lin, 2002).

Nearest neighbors for local methods were determined using symmetrized similarities10

1
2 (ψ(x,xi)+ψ(xi ,x)). Cross-validation choices are listed in Table 2. These choices were based on
recommendations and usage in previous literature, and on preliminary experiments we conducted
with a larger range of cross-validation parameters on the Voting and Proteindata sets.

7.3 Results

The mean and standard deviation (in parentheses) of the error across the 20 randomized test/training
partitions are shown in Table 3. The bold results in each column indicate the classifier with lowest
average error; also bolded are any classifiers that were not statisticallysignificantly worse than the
classifier with lowest average error.

9. The original data set has 226 samples with 9 classes. As is standard practice with this data set, we removed those
classes which contain less than 7 samples.

10. Only Amazon-47 and Patrol are natively asymmetric.

764



SIMILARITY -BASED CLASSIFICATION

Amazon-47 Aural Sonar Caltech-101

Face Rec Mirex Patrol

Protein Protein RBF-sim Voting

Figure 1: Similarity matrices of each data set with class divisions indicated by tickmarks; black
corresponds to maximum similarity and white to zero.

The similarity matrices in Figure 1 show that Aural Sonar and Voting exhibit fairly nice block-
diagonal structures, indicating that these are somewhat easy classification problems. This is re-
flected in the relatively low errors across the board and few statistically significant differences in
performance. More interesting results can be observed on the more difficult classification problems
posed by the other data sets.
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All local methods k: 1, 2, 3, . . . , 16, 32, 64, 128

KRR λ: 10−3,10−2, . . . ,10

KRI λ: 10−6,10−5, . . . ,10, and 106

PSVM ε: 10−4,10−3, . . . ,10

PSVM C: 100,101, . . . ,104

SVM-KNN C: 10−3,10−2, . . . ,105

SVM (linear, clip, flip, shift) C: 10−3,10−2, . . . ,105

SVM (RBF) C: 10−3, . . . ,10

SVM (RBF) γ: 10−5,10−4, . . . ,10

Table 2: Cross-validation Parameter Choices

The Amazon-47 data set is very sparse with at most four non-zero similarities per row. With
such sparse data, one might expect a 1-NN classifier to perform well; indeed for the uniformk-NN
classifier, the cross-validation chosek = 1 on all 20 of the randomized partitions. For all of the
local classifiers, thek chosen by cross-validation on this data set was never larger thank = 3, and
out of the 20 randomized partitions,k = 1 was chosen the majority of the time for all the local
classifiers. In contrast, the global SVM classifiers perform poorly on this sparse data set. The Patrol
data set is the next sparsest data set, and the results show a similar pattern.However, the Mirex data
set is also relatively sparse, and yet the global classifiers do well, in particular the SVMs that use
similarities as features. The Amazon-47 and Patrol data sets do differ fromthe Mirex data set in that
the self-similarities are not always maximal. Whether (and how) this difference causes or correlates
the relative differences in performance is an open question.

The Protein data set exhibits large differences in performance, with the statistically significantly
best performances achieved by two of the three SVMs that use similarity as features. The reason
that similarities on features performs so well while others do so poorly can beseen in the Protein
similarity matrix in Figure 1. The first and second classes (roughly the first and second thirds of
the matrix) exhibit a strong interclass similarity, and rows belonging to the same class exhibit very
similar patterns, thus treating the rows of the similarity matrix as feature vectors provides good
discrimination of classes. To investigate this effect, we transformed the entiredata set using a
radial basis function (RBF) to create a similarity based on the Euclidean distance between rows
of the original similarity matrix, yielding the 213×213 Protein RBF similarity matrix. One sees
from Table 3 that this transformation increases the performance of classifiers across the board,
indicating that this is indeed a better measure of similarity for this data set. Furthermore, after this
transformation we see a complete turnaround in performance: for Protein RBF, the SVMs that use
similarities as features are among the worst performers (with P-SVM still performing decently), and
the basick-NN does better than the best classifier given the original Protein similarities.

The Caltech-101 data set is the largest data set, and with 8677 samples in 101classes, an analysis
of the structure of this similarity matrix is difficult. Here we see the most dramatic enhancement in
performance (25% lower error) by using the KRR and KRI weights ratherthank-NN or the affinity
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Amazon-47 Aural Sonar Caltech-101

k-NN 16.95 (4.85)17.00 (7.65)41.55 (0.95)

affinity k-NN 15.00 (4.77) 15.00 (6.12) 39.20 (0.86)

KRI k-NN (clip) 17.68 (4.75)14.00 (6.82) 30.13 (0.42)

KRR k-NN (pinv) 16.10 (4.90) 15.25 (6.22)29.90 (0.44)

Local SDA 16.83 (5.11)17.75 (7.66)41.99 (0.52)

SVM-KNN (clip) 17.56 (4.60)13.75 (7.40) 36.82 (0.60)

SVM-similarities as kernel (clip) 81.34 (4.77)13.00 (5.34) 33.49 (0.78)

SVM-similarities as features (linear)76.10 (6.92)14.25 (6.94) 38.18 (0.78)

SVM-similarities as features (RBF)75.98 (7.33)14.25 (7.46) 38.16 (0.75)

P-SVM 70.12 (8.82)14.25 (5.97) 34.23 (0.95)

Face Rec Mirex Patrol

k-NN 4.23 (1.43) 61.21 (1.97)11.88 (4.42)

affinity k-NN 4.23 (1.48) 61.15 (1.90)11.67 (4.08)

KRI k-NN (clip) 4.15 (1.32) 61.20 (2.03)11.56 (4.54)

KRR k-NN (pinv) 4.31 (1.86) 61.18 (1.96)12.81 (4.62)

Local SDA 4.55 (1.67) 60.94 (1.94)11.77 (4.62)

SVM-KNN (clip) 4.23 (1.25) 61.25 (1.95)11.98 (4.36)

SVM-similarities as kernel (clip) 4.18 (1.25) 57.83 (2.05)38.75 (4.81)

SVM-similarities as features (linear)4.29 (1.36) 55.54 (2.52) 42.19 (5.85)

SVM-similarities as features (RBF) 3.92 (1.29) 55.72 (2.06) 40.73 (5.95)

P-SVM 4.05 (1.44) 63.81 (2.70)40.42 (5.94)

Protein Protein RBF Voting

k-NN 29.88 (9.96) 0.93 (1.71) 5.80 (1.83)

affinity k-NN 30.81 (6.61) 0.93 (1.71) 5.86 (1.78)

KRI k-NN (clip) 30.35 (9.71) 1.05 (1.72) 5.29 (1.80)

KRR k-NN (pinv) 9.53 (5.04) 1.05 (1.72) 5.52 (1.69)

Local SDA 17.44 (6.52) 0.93 (1.71) 6.38 (2.07)

SVM-KNN (clip) 11.86 (5.50) 1.16 (1.72) 5.23 (2.25)

SVM-similarities as kernel (clip) 5.35 (4.60) 1.16 (1.72) 4.89 (2.05)

SVM-similarities as features (linear)3.02 (2.76) 2.67 (2.12) 5.40 (2.03)

SVM-similarities as features (RBF) 2.67 (2.97) 2.44 (2.60) 5.52 (1.77)

P-SVM 1.86 (1.89) 1.05 (1.56) 5.34 (1.72)

Table 3: % Test misclassified averaged over 20 randomized test/training partitions.
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k-NN, suggesting that there are highly correlated samples that bias the classification. In contrast,
for the Amazon-47, Aural Sonar, Face Rec, Mirex, and Patrol data sets there is only a small win
by using the KRI or KRR weights, or a statistically insignificant small decline in performance (we
hypothesize this occurs because of overfitting due to the additional parameter λ). On Protein the
KRR error is 1/3 the error of the other weighted methods; this is a consequence of using the pinv
rather than other types of spectrum modification, as can be seen from Table 4. The other significant
difference between the weighting methods is a roughly 10% improvement in average error on Voting
by using the KRR or KRI weights. In conclusion, the use of diverse weights may not matter on some
data sets, but can be very helpful on certain data sets.

SVM-KNN was proposed by Zhang et al. (2006) in part as a way to reduce the computations
required to train a global SVM using similarities as a kernel, and their results showed that it per-
formed similarly to a global SVM. That is somewhat true here, but some differences emerge. For the
Amazon-47 and Patrol data sets the local methods all do well including SVM-KNN, but the global
methods do poorly, including the global SVM using similarities as a kernel. On theother hand,
the global SVM using similarities as a kernel is statistically significantly better than SVM-KNN
on Caltech-101, even though the best performance on that data set is achieved by a local method
(KRR). From this sampling of data sets, we conclude that applying the SVM locally or globally
can in fact make a difference, but whether it is a positive or negative difference depends on the
application.

Among the four global SVMs (including P-SVM), it is hard to draw conclusions about the
performance of the one that uses similarities as a kernel versus the three that use similarities as
features. In terms of statistical significance, the SVM using similarities as a kernel outperforms the
others on Patrol and Caltech-101 whereas it is the worst on Amazon-47 and Protein, and there is
no clear division on the remaining data sets. Lastly, the results do not show statistically significant
differences between using the linear or RBF version of the SVM with similaritiesas features except
for small differences on Face Rec and Patrol.

7.4 Clip, Flip, or Shift?

Different approaches to modifying similarities to form a kernel were discussed in Section 2.1. We
experimentally compared clip, flip, and shift for the KRI weights, SVM-KNN,and SVM, and flip,
clip, shift and pinv for the KRR weights on the nine data sets. Table 4 shows the five data sets
for which at least one method showed statistically significantly different results depending on the
choice of spectrum modification.

For KRR weights, one sees that the pinv solution is never statistically significantly worse than
clip, flip, or shift, which are worse than pinv at least once. For KRI weights, the differences are
negligible, but based on average error we recommend clip.

Flip takes the absolute value of the eigenvalues, which is similar to the effect ofusingSST (as
discussed in Section 2.1.5), which for an SVM is equivalent to using the SVMon similarities-as-
features. Thus it is not surprising that for the Protein data set, which we have seen in Table 3 works
best with similarities as features, flip makes a large positive difference for SVM-KNN and SVM.
One sees different effects of the spectrum modification on the local methods versus the global SVMs
because for the local methods the modification is only done locally.
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KRI KRR

Amazon Mirex Patrol Protein Voting Amazon Mirex Patrol Protein Voting

clip 17.68 61.20 11.56 30.35 5.34 16.2261.22 11.67 30.35 5.34

flip 17.56 61.17 11.67 31.28 5.34 16.22 61.1212.08 30.47 5.29

shift 17.68 61.25 13.23 30.35 5.29 16.34 61.25 11.88 30.35 5.52

pinv - - - - - 16.10 61.18 12.81 9.53 5.52

SVM-KNN SVM

Amazon Mirex Patrol Protein Voting Amazon Mirex Patrol Protein Voting

clip 17.56 61.25 11.98 11.86 5.23 81.34 57.83 38.75 5.35 4.89

flip 17.56 61.25 11.88 1.74 5.23 84.27 56.34 47.29 1.51 4.94

shift 17.56 61.25 11.8830.23 5.34 77.68 85.29 40.83 23.49 5.17

Table 4: Clip, flip, shift, and pinv comparison. Table shows % test misclassified averaged over 20
randomized test/training partitions for the five data sets that exhibit statistically significant
differences between these spectrum modifications. If there are statisticallysignificant dif-
ferences for a given algorithm and a given data set, then the worst score, and scores not
statistically better, are shown in italics.

8. Conclusions and Some Open Questions

Similarity-based learning is a practical learning framework for many problemsin bioinformatics,
computer vision, and those regarding human similarity judgement. Kernel methods can be applied
in this framework, but similarity-based learning creates a richer set of challenges because the data
may not be natively PSD.

In this paper we explored four different approximations of similarities: clipping, flipping, and
shifting the spectrum, and in some cases a pseudoinverse solution. Experimental results show small
but sometimes statistically significant differences. Based on the theoretical justification and results,
we suggest practitioners clip. Flipping the spectrum does create significantly better performance for
the original Protein problem because, as we noted earlier, flipping the spectrum has a similar effect
to using the similarities as features, which works favorably for the original Protein problem. How-
ever, it should be easy to recognize when flip will be advantageous, modify the similarity as we did
for the Protein RBF problem, and possibly achieve even better results. Concerning approximating
similarities, we addressed the issue of consistent treatment of training and test samples when ap-
proximating the similarities to be PSD. Although our linear solution is consistent, we do not argue
it is optimal, and consider this issue still open.

A fundamental question is whether it is more advisable to use the similarities as kernels or
features. We showed that the difference for SVMs is in the regularization, and that for similarities-
as-kernels generalization bounds can be proven using standard learning theory machinery. How-
ever, it is not straightforward to apply standard learning theory machinery to similarities-as-features
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because the normal Rademacher complexity bounds do not hold with the resulting adaptive non-
independent functions. To address this, we considered splitting the training set into prototypes for
similarities-as-features and a separate set to evaluate the empirical risk. Even then, we were only
able to show generalization bounds if the number of prototypes grows slowly. Complementary re-
sults have been shown for similarities-as-features by Balcan et al. (2008a) and Wang et al. (2007),
but further analysis would be valuable. Experimentally, it would be interesting to investigate meth-
ods using prototypes and performance as the number of training samples increases, ideally with
larger data sets than those used in our experiments.

We proposed design goals of affinity and diversity for weighting nearest neighbors, and sug-
gested two methods for constructing weights that satisfy these design goals.Experimental results
on eight diverse data sets demonstrated that the proposed weightedk-NN methods can significantly
reduce error compared to standardk-NN. In particular, on the largest data set Caltech-101, the
proposed KRI and KRR weights provided a roughly 25% improvement overk-NN and affinity-
weightedk-NN. The Caltech-101 similarities are PSD, and it may be that the KRI and KRR meth-
ods are sensitive to approximations of the matrixS. Preliminary experiments using the unmodified
local S and solving KRI or KRR objective functions using a global optimizer showedan increase
in performance but at the price of greatly increased computational cost. Compared to the local
SVM (SVM-KNN), the proposed KRR weights were statistically significantly worse on the two-
class data sets Aural Sonar and Patrol, but statistically significantly better onboth of the highly
multi-class data sets, Amazon-47 and Caltech-101.

Overall, the results show that local methods are effective for similarity-based learning. It is
tempting from the obvious discrepancy between the performance of local and global methods on
Amazon and Patrol to argue that local methods will work best for sparse similarities. However,
Mirex is also relatively sparse, and the best methods are global. The Amazon and Patrol data sets
are different from the other data sets in that they are the only two data sets with non-maximal
self-similarities, and this issue may be the root of the discrepancy. For localmethods an open
question not addressed here is how to efficiently find nearest-neighbors given only similarities.
Some research has been done in this area, for example Goyal et al. (2008) developed methods for
fast search with logarithmic query times that depend on how “disordered” thesimilarity is, where
they measure a disorder constantD of a set of samples as theD that ensures that ifxi is thekth most
similar sample tox, andx j is theqth most similar sample tox, thenx is among theD(q+ k) most
similar samples tox j .

Lastly, we note that similarity-based learning can be considered a special case of graph-based
learning (see, for example, Zhu, 2005), where the graph is fully-connected. However, most graph-
based learning literature addresses the problem of semi-supervised learning, while the similarity-
based learning algorithms discussed in this paper are mainly for supervisedlearning. We have
seen no cross-referential literature between these two fields, and it remains an open question which
techniques developed for one problem will be useful for the other problem and vice versa.
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Appendix A.

Proof of Proposition 1: Recall the eigenvalue decompositionSclip = UTΛclipU . After removing
the zero eigenvalues inΛclip and their corresponding eigenvectors inU andUT , one can express
Sclip = ǓTΛ̌clipǓ , whereΛ̌clip is anm×mdiagonal matrix withm the number of nonzero eigenvalues
and Ǔ an m× n matrix satisfyingǓǓT = I . The vector representation of the training samples
implicitly used viaSclip is X = Λ̌1/2

clipǓ . Given test similarity vectors, the least-squares solution to

the equationXTx = s is x =
(
XXT

)−1
Xs. Let s̃ be the vector of the inner products between the

embedded test samplex and the embedded training samplesX, then

s̃= XTx = XT (XXT)−1
Xs= ǓTǓs= UTMclipUs= Pclips. �

The proofs of the generalization bounds of Theorem 1 and Theorem 2 rely on bounding the
Rademacher complexity of the function classesFS andFI , respectively. We provide the definition of
Rademacher complexity here for convenience.

Definition 1 (Rademacher Complexity) SupposeX = {X1,X2, . . . ,Xn} are samples drawn inde-
pendently from a distribution onΩ, and let F be a class of functions mapping fromΩ to R. Then,
the Rademacher complexity of F is

RX (F) = Eσ,X

(
sup
f∈F

∣∣∣∣∣
2
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣

)
,

whereσ = {σ1,σ2, . . . ,σn} is a set of independent uniform{±1}-valued random variables11 such
that P(σi = 1) = P(σi = −1) = 1/2 for all i.

The following lemma establishes that for a class of bounded functionsF , the generalization
error for anyf ∈ F is bounded above by a function ofR̂D( f ,L) andRD(F).

Lemma 1 (Bartlett and Mendelson, 2002, Theorem 7)Suppose(X,Y) and the elements ofD are
drawn i.i.d. from a distribution onΩ×{±1}. Let F be a class of bounded real-valued functions
defined onΩ such thatsupf∈F supx∈Ω | f (x)| < ∞. Suppose L: R → [0,1] is Lipschitz with constant
C and satisfies L(a) ≥ I{a≤0}. Then with probability at least1−δ with respect toD, every function
in F satisfies

P(Y f(X) ≤ 0) ≤ R̂D( f ,L)+2CRD(F)+

√
ln(2/δ)

2n
.

For the proof of Theorem 1, we also require the following bound on the Rademacher complexity
of kernel methods.

Lemma 2 (Bartlett and Mendelson, 2002, Lemma 22)Suppose the elements ofD are drawn
i.i.d. from a distribution on Ω × {±1}. Let FK denote the set of functions{

f (x) = ∑i αiK(x,Xi)
∣∣∣ ∑i, j αiα jK(Xi ,Xj) ≤ β2

}
, then by Jensen’s inequality,

RD(FK) ≤ 2β
√

E (K(X,X))

n
.

11. Such random variables are calledRademacher random variablesand their distribution is called theRademacher
distribution.
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Proof of Theorem 1: Theorem 1 is an application of Lemma 1 and 2 for the function classFS ={
f (s) = wTs

∣∣wTSw≤ β2
}

. By replacing the kernel functionK in Lemma 2 withψ, and noticing
E (ψ(X,X)) ≤ κ2 sinceψ(a,a) ≤ κ2 for all a∈ Ω, we haveRD(FS) ≤ 2βκ

√
1/n. It can be verified

that the function classFS is bounded as| f (s)| ≤ βκ for all f ∈ FS, and thus we can apply Lemma 1.
Noting thatLt is Lipschitz withC = 1 completes the proof. �

Proof of Theorem 2: Recall that ˜s=
[
ψ(x, x̃1) . . . ψ(x, x̃m)

]T
where{(x̃1, ỹ1), . . . , (x̃m, ỹm)}⊆D

is a subset of the training data andD̃ =D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)} is the remaining training set. It is
tempting to apply Lemma 2 with the linear kernel, but in this case, this does not satisfy the definition
of the function classFI =

{
f (s̃) = wT s̃

∣∣wTw≤ β2
}

defined on these prototypes. The following
bound on the Rademacher complexity mirrors that of Bartlett and Mendelson (2002, Lemma 22),
but requires an important modification noted below:

R
D̃

(FI ) = E
D̃,σ

(
sup
f∈FI

∣∣∣∣∣
2
n

n−m

∑
i=1

σi f (s̃i)

∣∣∣∣∣

)

≤ 2
n

E
D̃,σ

(
sup

‖w‖2≤β

∣∣∣∣∣w
T

(
n−m

∑
i=1

σi s̃i

)∣∣∣∣∣

)

(a)
≤ 2

n
E
D̃,σ

(
β

∥∥∥∥∥
n−m

∑
i=1

σi s̃i

∥∥∥∥∥
2

)

=
2β
n

E
D̃,σ

(√
∑
i, j

σiσ j s̃T
i s̃j

)

(b)

≤ 2β
n

√
∑
i, j

E
D̃,σ

(
σiσ j s̃T

i s̃j
)

=
2β
n

√
n−m

∑
i=1

E
D̃

(
s̃T
i s̃i
)

=
2β
n

√√√√
n−m

∑
i=1

m

∑
j=1

E
D̃

ψ2(xi , x̃ j)

≤ 2βκ2

√
m
n
− m2

n2

≤ 2βκ2

√
m
n

where (a) follows from the Cauchy-Schwarz inequality12 and (b) follows from Jensen’s inequality.
It can be verified that the function class is bounded as| f (s̃)| ≤ βκ2√m for all f ∈ FI , and thus

we can apply Lemma 1. As before, noting thatLt is Lipschitz withC = 1 completes the proof. �

The proof of Theorem 2 illustrates why using similarities as features has a poorer guarantee on
the generalization than using similarities as a kernel. Specifically, the function class corresponding

12. Note that in the proof of Theorem 1 and in Bartlett and Mendelson (2002, Lemma 22) the Cauchy-Schwartz inequality
is applied in the RKHS space whereas here it is applied inR

m.
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to regularization onwTw is too large. Of course, this flexibility can be mitigated by using only a
set ofm prototypes whose size grows aso(n), which can be seen as an additional form of capacity
control.
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