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Abstract

This paper reviews and extends the field of similarity-badedsification, presenting new analy-
ses, algorithms, data sets, and a comprehensive set ofregpéal results for a rich collection of

classification problems. Specifically, the generalizapilif using similarities as features is ana-
lyzed, design goals and methods for weighting nearestbeis for similarity-based learning are
proposed, and different methods for consistently convgimilarities into kernels are compared.
Experiments on eight real data sets compare eight appreactitheir variants to similarity-based
learning.

Keywords: similarity, dissimilarity, similarity-based learningydefinite kernels

1. Introduction

Similarity-based classifiers estimate the class label of a test sample basedionildriies between
the test sample and a set of labeled training samples, and the pairwise similaitieeb the
training samples. Like others, we use the teimilarity-based classificatiowhether the pairwise
relationship is a similarity or dissimilarity. Similarity-based classification does natineglirect
access to the features of the samples, and thus the sample space carsék aolynecessarily a
Euclidean space, as long as the similarity function is well defined for anyopaamples. Lef
be the sample space atibe the finite set of class labels. Lgt: Q x Q — R be the similarity
function. We assume that the pairwise similarities betweraining samples are given asax n
similarity matrixSwhose(i, j)-entry is@(x;,X;), wherex; € Q,i =1,...,n, denotes théh training
sample, ang; € G, i = 1,...,n the correspondingh class label. The problem is to estimate the
class label for a test sampl& based on its similarities to the training sampl€s, %), i =1,...,n
and its self-similarityd(x, X).

(©2009 Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi antha Cazzanti.



CHEN, GARCIA, GUPTA, RAHIMI AND CAZZANTI

Similarity-based classification is useful for problems in computer vision, waimdtics, infor-
mation retrieval, natural language processing, and a broad rangeeofields. Similarity functions
may be asymmetric and fail to satisfy the other mathematical properties requiraétiics or inner
products (Santini and Jain, 1999). Some simple example similarity functiongarel time from
one place to another, compressibility of one random process giveresbadtfor another, and the
minimum number of steps to convert one sequence into another (edit dist@waputer vision
researchers use many similarities, such as the tangent distance (Dud2@dH), earth mover’s
distance (EMD) (Rubner et al., 2000), shape matching distance (Belethaie 2002), and pyramid
match kernel (Grauman and Darrell, 2007) to measure the similarity or dissimibetityeen im-
ages in order to do image retrieval and object recognition. In bioinformaltiesSmith-Waterman
algorithm (Smith and Waterman, 1981), the FASTA algorithm (Lipman and Beal®©85) and
the BLAST algorithm (Altschul et al., 1990) are popular methods to computeithitarity be-
tween different amino acid sequences for protein classification. Theecsisnilarity between term
frequency-inverse document frequency (tf-idf) vectors is widebdus information retrieval and
text mining for document classification.

Notions of similarity appear to play a fundamental role in human learning, amsdpbycholo-
gists have done extensive research to model human similarity judgemergky'seontrast model
andratio model(Tversky, 1977) represent an important class of similarity functionshése two
models, each sample is represented by a set of features, and the similattgritis an increasing
function of set overlap but a decreasing function of set differentesrsky’s set-theoretic similar-
ity models have been successful in explaining human judgement in variousrdgymalssessment
tasks, and are consistent with the observations made by psychologistsetniats do not account
for cognitive judgement of similarity in complex situations (Tversky, 1977 3kgand Gati, 1982;
Gati and Tversky, 1984). Therefore, similarity-based classification Imeayseful for imitating or
understanding how humans categorize.

The main contributions of this paper are: (1) we distill and analyze coneeptssues specific
to similarity-based learning, including the generalizability of using similarities asifes, (2) we
propose similarity-based nearest-neighbor design goals and methdd8) ave present a compre-
hensive set of experimental results for eight similarity-based learnimigjgms and eight different
similarity-based classification approaches and their variants. First, wesdigiee idea of similari-
ties as inner products in Section 2, then the concept of treating similaritieatasgfe in Section 3.
The generalizability of using similarities as features and that of using similargié®mels are
compared in Section 4. In Section 5, we propose design goals and soligiaimilarity-based
weighted nearest-neighbor learning. Generative similarity-based aassfie discussed in Sec-
tion 6. Then in Section 7 we describe eight similarity-based classificatiorlgongb detail our
experimental setup, and discuss the results. The paper concludes m@topen questions in Sec-
tion 8. For the reader’s reference, key notation is summarized in Table 1.

2. Similarities as Inner Products

A popular approach to similarity-based classification is to treat the given siteaas inner prod-
ucts in some Hilbert space or to treat dissimilarities as distances in some Eudjpsea This
approach can be roughly divided into two categories: one is to explicitly ériteesamples in a
Euclidean space according to the given (dis)similarities using multidimensicalg (see Borg
and Groenen, 2005, for further reading); the other is to modify the similatitidoe kernels and
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SIMILARITY -BASED CLASSIFICATION

Q sample space S nx n matrix with (i, j)-entry Q(xi, X;)
G set of class labels S nx 1 vector withjth elementp(x;,x;)
n number of training samples S nx 1 vector withjth element(x, xj)

X €Q ith training sample 1 column vector of 1's

xeQ test sample | identity matrix

Vieg class label ofth training sample Iy indicator function

yegn n x 1 vector withith elementy; K kernel matrix or kernel function

ye g estimated class label for k neighborhood size

D n training sample pair§(x,yi)}i, | L hinge loss function

P:QxQ—R similarity function diagla) diagonal matrix witha as the diagonal

Table 1: Key Notation

apply kernel classifiers. We discuss different methods for modifying gitigla into kernels in
Section 2.1. An important technicality is how to handle test samples, which isssddt in Sec-
tion 2.2.

2.1 Modify Similarities into Kernels

The power of kernel methods lies in the implicit use of a reproducing keéfileért space (RKHS)
induced by a positive semidefinite (PSD) kernel (@kbpf and Smola, 2002). Although the mathe-
matical meaning of a kernel is the inner product in some Hilbert space,dasthimterpretation of a
kernel is the pairwise similarity between different samples. Conversely neararchers have sug-
gested treating similarities as kernels, and applying any classification algdh#tranly depends
on inner products. Using similarities as kernels eliminates the need to explicitlydehmeamples
in a Euclidean space.

Here we focus on the support vector machine (SVM), which is a well-kn@presentative of
kernel methods, and thus appears to be a natural approach to similadg{earning. All the SVM
algorithms that we discuss in this paper are for binary classificasioch thaty; € {+1}. Lety be
then x 1 vector whoséth element ig;. The SVM dual problem can be written as

1
maximize 1Ta — Za' diagly)K diag'y)a
I 50 diagly)K diag(y) )
subjectto 0<a <Cl, y'a=0,

with variablea € R", whereC > 0 is the hyperparameté,is a PSD kernel matrix whoge, j )-entry
is K(x;,Xj), 1 is the column vector with all entries one, arddenotes component-wise inequality
for vectors. The corresponding decision function is@kbpf and Smola (2002)

y= Sgn<_iaiYiK(XaXi) + b) :

n
b=yi— > ajyiK(xx;)
=1

where

for anyi that satisfies & a; < C. The theory of RKHS requires the kernel to satisfy Mercer’s
condition, and thus the corresponding kernel malkixnust be PSD. However, many similarity

1. We refer the reader to Hsu and Lin (2002) for multiclass SVM.
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functions do not satisfy the properties of an inner product, and thusirfiusty matrix S can
be indefinite. In the following subsections we discuss several methods tidyrsodilarities into
kernels; a previous review can be found in Wu et al. (2005). Unlesdiomexa otherwise, in the
following subsections we assume tl&s symmetric. If not, we use its symmetric pér(SJr ST)
instead. Notice that the symmetrization does not affect the SVM objectivaidonin (1) since
a3 (S+S)a=3%a"Sa+Za"'STa=asa.

2.1.1 INDEFINITE KERNELS

One approach is to simply replaBewith S, and ignore the fact th& is indefinite. For example,
although the SVM problem given by (1) is no longer convex w8anindefinite, Lin and Lin (2003)
show that the sequential minimal optimization (SMO) (Platt, 1998) algorithm will siitiverge
with a simple modification to the original algorithm, but the solution is a stationary pwiteéad of
a global minimum. Ong et al. (2004) interpret this as finding the stationary poateproducing
kernel Kran space (RKKS), while Haasdonk (2005) shows that this is equivalenirtionizing the
distance between reduced convex hulls in a pseudo-Euclidean spEcein/space, denoted b,
is defined to be the direct sum of two disjoint Hilbert spaces, denoted bsnd # , respectively.
So for anya,b € X = #H, @& H_, there are uniqua,b, € #, and uniquea_,b_ € # such that
a=a,; +a andb=Db, +b_. The “inner product” onx is defined as

<a7 b)K = <a+7b+>5-4 - <a—7b—>}L7

which no longer has the property of positive definiteness. Pseud@d&aic space is a special case

of Krein space wheré{, and#_ are two Euclidean spaces. Ong et al. (2004) provide a representer
theorem for RKKS that poses learning in RKKS as a problem of findingtestay point of the

risk functional, in contrast to minimizing a risk functional in RKHS. Using indiédirkernels in
empirical risk minimization (ERM) methods such as SVM can lead to a saddle mbitton and

thus does not ensure minimizing the risk functional, so this approach dogsi@@ntee learning

in the sense of a good function approximation. Also, the nonconvexity girthldem may require
intensive computation.

2.1.2 SPECTRUMCLIP

SinceSis assumed to be symmetric, it has an eigenvalue decomposSitiod TAU, whereU is

an orthogonal matrix and is a diagonal matrix of real eigenvalues, that/is= diag(A1,...,An).
Spectrum clip make$ PSD by clipping all the negative eigenvalues to zero. Some researchers
assume that the negative eigenvalues of the similarity matrix are caused bwndigiew spectrum

clip as a denoising step (Wu et al., 2005). Let

/\C”p = dlag(max()\lu 0)7 R max()\l"lv O)) )

and the modified PSD similarity matrix &g, = UT/\C"pU. Let u; denote theth column vector of
U. Using&ip as a kernel matrix for training the SVM is equivalent to implicitly usig- /\iﬁﬁui
as the representation of thi training sample sincéx;, x;) is equal to thei, j)-entry of Sip. A
mathematical justification for spectrum clip is ti&fy is the nearest PSD matrix ®in terms of

the Frobenius norm (Higham, 1988), that is,

Soip = argmin|K —Sfe.
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where> denotes the generalized inequality with respect to the PSD cone.

Recently, Luss and d’Aspremont (2007) have proposed a robigstsgn of SVM for indefinite
kernels. Instead of only considering the nearest PSD m&{jiixthey consider all the PSD matrices
within distanceB to S, that is,{K = 0| ||K — §|¢ < B}, wheref3 > mink-o||K — ||, and propose
to maximize the worst case of the SVM dual objective among these matrices:

1

maximi min 1"a — ZaT diag'y)K diag'y)a
x& ize KEO.|KI—S|F§B< 20( iagy)K diag(y) >

subjectto 0<a <C1, y'a=0.

This model is more flexible in the sense that the set of poskibtethe hypothesis space lies in a
ball with radiusf3 centered aroun8. Different draws of training samples will change the candidate
set ofK and could cause overfitting. In practice, they replace the hard consfkainS||g < 3 with

a penalty term and propose the following problem as the robust SVI& for

1
maximize l};ntlr(')l <1 a-a diagy)K diagly)a + p||K SHF)

(2
subjectto 0<a <Cl, y'a=0,

wherep > 0 is the parameter to control the trade-off. They point out that the inobigumn of (2) has

a closed-form solution, and the outer problem is convex since its objeés@/pointwise minimum

of a set of concave quadratic functionsooénd thus concave. A fast algorithm to solve (2) is given
by Chen and Ye (2008).

2.1.3 SPECTRUMFLIP

In contrast to the interpretation that negative eigenvalues are causedid®y Laub and Niller
(2004) and Laub et al. (2006) show that the negative eigenvaluesy# similarity data can code
useful information about object features or categories, which agvékesome fundamental psy-
chological studies (Tversky and Gati, 1982; Gati and Tversky, 19829rder to use the negative
eigenvalues, Graepel et al. (1998) propose an SVM in pseudo-Eanlspace, and Pekalska et al.
(2001) also consider a generalized nearest mean classifier and liigherdiscriminant classifier
in the same space. Following the notation in Section 2.1.1, they assume that tHesskenip a
Krein spaceX = 7, © # with similarities given byy(a,b) = (a;,by )4, —(a ,b_), . These
proposed classifiers are their standard versions in the Hilbert sihaee?/, & H_ with associated
inner producta, b) ,, = (a;,b: )4, +(a-,b-), . Thisis equivalent to flipping the sign of the neg-
ative eigenvalues of the similarity matr& let Agip = diag(|A1/,...,|An|), and then the similarity
matrix after spectrum flip iSip, = UT/\ﬂipU . Wu et al. (2005) note that this is the same as replacing
the original eigenvalues @with its singular values.

2.1.4 SPECTRUMSHIFT

Spectrum shift is another popular approach to modifying a similarity matrix interagk matrix:
sinceS+Al =UT(A+ AU, any indefinite similarity matrix can be made PSD by shifting its spec-
trum by the absolute value of its minimum eigenvaluigin(S)|. Let Ashist = A+ |Min (Amin(S),0)|1,
which is used to form the modified similarity matiix = U T AshitU. Compared with spectrum
clip and flip, spectrum shift only enhances all the self-similarities by the atrafyimin(S)| and
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does not change the similarity between any two different samples. Roth20@8) propose spec-
trum shift for clustering nonmetric proximity data and show tBaf; preserves the group structure
of the original data represented 8y Let X be the set of samples to cluster, a{m,g}g‘:l be a
partition of X into N sets. Specifically, they consider minimizing the clustering cost funttion
N
W%, Xj)

f Xf N— = - )

({ }671) /Z |Xg|

(=1i,]€X)
i#]
where|X;| denotes the cardinality of sgf. It is easy to see that (3) is invariant under spectrum
shift.

Recently, Zhang et al. (2006) proposed training an SVM only okthearest neighbors of each
test sample, called SVM-KNN. They used spectrum shift to producerseekéom the similarity
data. Their experimental results on image classification demonstrated thatk8N\Wperforms
comparably to a standard SVM classifier, but with significant reduction iimigatime.

@)

2.1.5 ECTRUMSQUARE

The fact thatSS > 0 for anyS € R™" led us to consider usin§S as a kernel, which is valid
even wherSis not symmetric. For symmetrig this is equivalent to squaring its spectrum since
SS =UTA2U. Itis also true that usin§g is the same as defining a new similarity functipriior
anya,be Q as

Ba) = 3 W@x)uix.b)

We note that for symmetri§, treatingSS as a kernel matriX is equivalent to representing each
X by its similarity feature vectog = [lp(x;,xl) qJ(xi,xn)]T sinceK; = (s,sj). The concept
of treating similarities as features is discussed in more detail in Section 3.

2.2 Consistent Treatment of Training and Test Samples

Consider a test samplethat is the same as a training samgle Then if one uses an ERM clas-
sifier trained with modified similaritieS, but uses the unmodified test similarities, represented by
vectors = [lp(x, X1) ... qJ(x,xn)]T, the same sample will be treated inconsistently. In general,
one would like to modify the training and test similarities in a consistent fashionistha modify
the underlying similarity function rather than only modifying t8e In this context, givers and
S we term a transformatiof on test samplesonsistentf T(s) is equal to thath row of Sfor
i=1...,n

One solution is to modify the training and test samples all at once. Howeven telkt samples
are not known beforehand, this may not be possible. For such &&sest, al. (2005) proposed to
first modify Sand train the classifier using the modifiect n similarity matrixS, and then for each
test sample modify itsin an effort to be consistent with the modified similarities used to train the
model. Their approach is to re-compute the same modification on the augntentdd x (n+1)

similarity matrix
S S
$=17 yn)

2. They originally use dissimilarities in their cost function, and we refortedtanto similarities with the assumption
that the relationship between dissimilarities and similarities is affine.
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to form §, and then let the modified test similaritie®é the firsin elements of the last column of
8. The classifier that was trained &is then applied o1s. To implement this approach, Wu et al.
(2005) propose a fast algorithm to perform eigenvalue decompositiShbyf using the results of

the eigenvalue decomposition 8fHowever, this approach does not guarantee consistency.

To attain consistency, we note that both the spectrum clip and flip modificateonbe rep-
resented by linear transformations, that$s= PS whereP is the corresponding transformation
matrix, and we propose to apply the same linear transform&ions such thas= Ps. For spec-
trum flip, the linear transformation Ry, = UTMﬂipU, where

Mip = diag(sgn(A1),...,sgn(An)).

For spectrum clip, the linear transformatiorPig, = UTMC“pU, where

Maiip = diag(la, >0, -+ 1 an>0}) »

andly, is the indicator function. Recall that usigimplies embedding the training samples in a
Euclidean space. For spectrum clip, this linear transformation is equivalembedding the test
sample as a feature vector into the same Euclidean space of the embeddiegl saimples:

Proposition 1 Let Sjip be the Gram matrix of the column vectors oEXR™", whererank(X) =m.
For a given s, let x= argminegm | XTz— 8|2, then X x = Pgjps.

The proof is in the appendix.

Proposition 1 states that if thetraining samples are embeddedRf' with S, as the Gram
matrix, and we embed the test sampleRifi by finding the feature vector whose inner products
with the embedded training samples are closest to the given the inner products between the
embedded test sample and the embedded training samples aresreeggs.

On the other hand, there is no linear transformation to ensure consistangyefctrum shift.
For our experiments using spectrum shift, we adopt the approach of ®/u2005), which for this
case is to les = s, because spectrum shift only affects self-similarities.

3. Similarities as Features

Similarity-based classification problems can be formulated into standard lgagmmablems in Eu-
clidean space by treating the similarities between a samaial then training samples as features
(Graepel et al., 1998, 1999; Pekalska et al., 2001; Pekalska andZ0@®; Liao and Noble, 2003).
That is, represent sampieby the similarity feature vectas. As detailed in Section 4, the gener-
alizability analysis yields different results for using similarities as featurdsuaimg similarities as
inner products.

Graepel et al. (1998) consider applying a linear SVM on similarity featamtors by solving
the following problem:

NPEPE ST & T .
minimize éHWHZJrCiZ\L(W s+byi) (4)

with variablesw € R", b € R and hyperparamete® > 0, whereL (a,B) = max1— ap,0) is the
hinge loss function. Liao and Noble (2003) also propose to apply an SWiiroilarity feature
vectors; they use a Gaussian radial basis function (RBF) kernel.
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In order to make the solutiow sparser, which helps ease the computation of the discriminant
function f (s) = w's+ b, Graepel et al. (1999) substitute thenorm regularization for the squared
/>-norm regularization in (4), and propose a linear programming (LP) machin

n
minimize ||w||,+C ZLL(WTS +b,yi). (5)
w,b i&

Balcan et al. (2008a) provide a theoretical analysis for using similaritiésafisres, and show
that if a similarity is good in the sense that the expected intraclass similarity isisutfjclarge
compared to the expected interclass similarity, then givénaining samples, there exists a linear
separator on the similarities as features that has a specifiable maximumtexnoraagin that de-
pends om. Specifically, Theorem 4 in Balcan et al. (2008a) gives a sufficiendition on the
similarity functiony for (4) to achieve good generalization. Their latest resultgfanargin (in-
versely proportional tdwl||1) provide similar theoretical guarantees for (5) (Balcan et al., 2008b,
Theorem 11). Wang et al. (2007) show that under slightly less res&riaigumptions on the simi-
larity function there exists with high probability a convex combination of simplesdiass on the
similarities as features which has a maximum specifiable error.

Another approach is the potential support vector machine (P-SVM)Hieder and Obermayer,
2006; Knebel et al., 2008), which solves

1
minimize Z|ly— Sal|2+ ¢/l
ir ZHV 12 +€llall1 ©)

subjectto ||ale <C,

whereC > 0 ande > 0 are two hyperparameters. We note that by strong duality (6) is equitalen
T 1
minimize éHy—SG\|§+€|!GII1+VIIO(Hoo (7)

for somey > 0. One can see from (7) that P-SVM is equivalent to the lasso regne@sizshirani,
1996) with an extrd.-norm regularization term. The use of multiple regularization terms in P-
SVMis similar to the elastic net (Zou and Hastie, 2005), which ésesd squared, regularization
together.

The algorithms above minimize the empirical risk with regularization. In additiokalBka et
al. consider generative classifiers for similarity feature vectors; theggse a regularized Fisher
linear discriminant classifier (Pekalska et al., 2001) and a regularizadtafic discriminant classi-
fier (Pekalska and Duin, 2002).

We note that treating similarities as features may not capture discriminative infomifahere
is a large intraclass variance compared to the interclass variance, evendfases are well-
separated. A simple example is if the two classes are generated by Gaussiantins with
highly-ellipsoidal covariances, and the similarity function is taken to be ativedanear function
of the distance.

4. Generalization Bounds of Similarity SVM Classifiers

To investigate the generalizability of SVM classifiers using similarities, we aealys forms of
SVMs: using similarity as a kernel as discussed in Section 2, and a linearuSiig the similarities
as features as given by (4). When similarities are used as featurelspwétst good generalization
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performance can be achieved by training the SVM on a small subse{-afn) randomly selected
training examples, and we compare this to the established analysis for tiedizeadrSVM.
The SVM learns a discriminant functidi{s) = w' s+ b by minimizing the empirical risk

Rp(f,L) = rl]il_(f(s),yi),

whereD denotes the training set, subject to some smoothness cons{faihat is,

minimize Ry (f,L) +AnA( ),

wherei, = ﬁ: We note that using (arbitrary) similarities as features corresponds taysaftin) =
w'w, while using (PSD) similarities as a kernel changes the smoothness carntstrgiff ) = w' Sw
(Rifkin, 2002, Appendix B), and in fact, this change of regularizer isdhly difference between
these two similarity-based SVM approaches. In this section, we examine fosnihll change in
regularization affects the generalization ability of the classifiers.

To simplify the following analysis, we do not directly investigate the SVM clags#pre-
sented; instead, as is standard in SVM learning theory, we investigatelliwifig constrained
version of the problem:

minifmize Rop(f,Lt)

8
subjectto A((f) < B?, Y

with truncated hinge loss; 2 min(L, 1) € [0,1] and f (s) = w' s stripped of the intercerit.
The following generalization bound for the SVM using (PSD) similaritias a kernel follows
directly from the results in Bartlett and Mendelson (2002).

Theorem 1 (Generalization Bound of Similarities as Kernel) Suppose (x,y) and D =
{(%i,yi)}{., are drawn i.i.d. from a distribution o2 x {£1}. Let be a positive definite simi-
larity such that(a,a) < k? for somex > 0and all ac Q. Let S be the i n matrix with(i, j)-entry
P(x;,Xj) and s be the i 1 vector with ith elemeng)(x,x). Define ks to be the set of real-valued
functions{ f(s) = w's|w"Sw< B?} for a finiteB. Then with probability at least — & with respect
to D, every function f in Esatisfies

P(yf(s) <0) < ﬁ@(f,Lt)+4BK\/E+ \/@

The proof is in the appendix.

Theorem 1 says that with high probability,ras- o, the misclassification rate is tightly bounded
by the empirical riskRy( f, L), implying that a discriminant function trained by (8) wifif(f) =
w' Swgeneralizes well to unseen data.

Next, we state a weaker result in Theorem 2 for the SVM using (arbitranjlesities as fea-
tures. Let the features be the similaritiesrt¢< n) prototypes (X1,¥1), ..., (Xm, ¥m) } € D randomly
chosen from the training set so theaisthem x 1 vector withith elementy(x,%). Results will be

obtained on the remaininy— mtraining data = D\{(%1,%1), -, (Km, Im) }-

3. If the original similarities are not PSD, then they must be modified to ll&Sore this result applies; see Section 2
for a discussion of common PSD modifications.
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Theorem 2 (Generalization Bound of Similarities as Features)Suppose (x,y) and D =
{(%i,yi)}{., are drawn i.i.d. from a distribution o2 x {+1}. Let{ be a similarity such that
W(a,b) < k?for somek > 0and allab € Q. Let{(X1,%1), ..., &mn,¥m)} C D be a set of randomly
chosen prototypes, and dendfe= D\{(X1,¥1),--.,(Xm,¥m)}. Let§ be the mx 1 vector with ith
element(x,%). Define I to be the set of real-valued functiofd (5) = w'§|w'w < p?} for a
finite 3. Then with probability at least — & with respect t(ﬁ), every function f in Fsatisfies

P(yf(s) <0) <Rz (f,L) +4BK2\/T+ \/@.

The proof is in the appendix.

Theorem 2 only differs significantly from Theorem 1 in the te(ﬁn%, which means that if
m, the number of prototypes used, grows no faster ti{ap, then with high probability, ag — oo,
the misclassification rate is tightly bounded by the empirical risk on the remainimgntyaset
I%(f,Lt). Note that Theorem 2 is unable to claim anything about the generalizatiomwhken,
that is, the entire training set is chosen as prototypes. For a furthesdisnusee the appendix.

5. Similarity-based Weighted Nearest-Neighbors

In this section, we consider design goals and propose solutions for t@digkarest-neighbors for
similarity-based classification. Nearest-neighbor learning is the algorithmadglaf theexemplar
model of human learning (Goldstone and Kersten, 2003). Weightedstasaighbor algorithms are
task-flexible because the weights on the neighbors can be used abilitiebas long as they are
non-negative and sum to one. For classification, such weights camimesifor each class to form
posteriors, which is helpful for use with asymmetric misclassification coste/and the similarity-
based classifier is a component of a larger decision-making system. Ag kedaming method,
weighted nearest-neighbor classifiers do not require training befertival of test samples. This
can be advantageous to certain applications where the amount of traiténig age, or there are
a large number of classes, or the training data is constantly evolving.

5.1 Design Goals for Similarity-based Weighted-NN

In this section, for a test samptewe usex; to denote itgth nearest neighbor from the training set as
defined by the similarity functiogy fori = 1,...,k, andy; to denote the label o§. Also, we redefine
Sas thek x k matrix of the similarities between thenearest neighbors arsdhek x 1 vector of the
similarities between the test sampl@and itsk-nearest neighbors. For each test sample, weighted
k-NN assigns weighty; to theith nearest neighbor far=1,... k. Weightedk-NN classifies the
test sample as the clasg that is assigned the most weight,
k
y=arg 5221 Wil fyi—g}- 9

It is common to additionally require that the weights be nonnegative and noedairch that the
weights form a posterior distribution over the set of clasges hen the estimated probability for
classgis z!‘zlwil{yi:g}, which can be used with asymmetric misclassification costs.

An intuitive and standard approach to weighting nearest neighbors isedagger weight to
neighbors that are more similar to the test sample. Formally, we state:
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Design Goal 1 (Affinity): wi should be an increasing function @fx, x;).

In addition, we propose a second design goal. In practice, some samples tiaining set
are often very similar, for example, a random sampling of the emails by osermpenay include
many emails from the same thread that contain repeated text due to repliesn&adding. Such
similar training samples provide highly-correlated information to the classifi¢ack, many of the
nearest neighbors may provide very similar information which can bias thsifida. Moreover, we
consider those training samples that are similar to many other training samplealiegse based
on the same motivation for tf-idf. To address this problem, one can chosigits to down-weight
highly similar samples and ensure that a diverse set of the neighborvbias & the classification
decision. We formalize this goal as:

Design Goal 2 (Diversity) w; should be a decreasing functionypfx;, x;).

Next we propose two approaches to weighting neighbors for similaritgebelassification that
aim to satisfy these goals.

5.2 Kernel Ridge Interpolation Weights

First, we describe kernel regularized linear interpolation, and we shatwttleads to weights that
satisfy the design goals. Gupta et al. (2006) proposed weights X\ in Euclidean space that
satisfy a linear interpolation with maximum entropy (LIME) objective:

k
ZLWiXi —X|| —AH(w)
- 2 (10)
k
subject to ZWi =1, w>0i=1,...,k
i=

2
minimize
w

with variablew € R¥, whereH (w) = —z!‘:lwi logw; is the entropy of the weights arid> O is
a regularization parameter. The first term of the convex objective int(ie3) to solve the linear
interpolation equations, which balances the weights so that the test point sppesximated by
a convex combination of the training samples. Additionally, the entropy maximizatishes the
LIME weights toward the uniform weights.

We simplify (10) to a quadratic programming (QP) problem by replacing thativegentropy
regularization with a ridge regulariZew™ w, and we rewrite (10) in matrix form:

PR 1 o1 T A T
minimize —-w X' XwW—X' XW+ -wW'w
W€ o 3 (11)
subjectto w>=0, 1Tw=1,

whereX = [xl Xg e xk]. Note that (11) is completely specified in terms of the inner products
of the feature vectors{x;,x;) and (x,x), and thus we term the solution to (11) kesrnel ridge

4. Due to the constrairt" w = 1, the ridge regularizer actually regularizes the variance of the weightshais has
similar effect as the negative entropy regularizer.
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interpolation (KRI) weights. Generalizing from inner products to similarities, we form th&l K
similarity-based weights:
. . . 1 T T A T
minimize —w' Sw—s'w+ -w'w
W€ 2 (12)
subjectto w>=0, 1'w=1.

There are three terms in the objective function of (12). Acting alone, tharlireem—s"w would
give all the weight to the 1-nearest neighbor. This is prevented by tige regularization term
%)\WTW, which regularizes the variance of and hence pushes the weights toward the uniform
weights. These two terms work together to give more weight to the training sauthplieare more
similar to the test sample, and thus help the resulting weights satisfy the firsh desibof reward-
ing neighbors with high affinity to the test sample. The quadratic term in (I2peaxpanded as
follows,

1w sw= }Z W(Xi, X )WiW;j

2 2 £ TR
From the above expansion, one sees that holding all else constan),ith@diggenp(x,x;) and
P(Xj,x) are, the smaller the chosanandw; will be. Thus the quadratic term tends to down-weight
the neighbors that are similar to each other and acts to achieve the sesadgt®l of spreading
the weight among a diverse set of neighbors.

A sensitivity analysis further verifies the above observations. dlet S s) be the objective
function of (12), andv* denote the optimal solution. To simplify the analysis, we only consider
w* in the interior of the probability simplex and thiig(w*; S, s) = 0. We first perturts by adding
o > 0 to itsith element, that iss = s+ dg, whereg denotes the standard basis vector whitise
element is 1 and O elsewhere. Then

Og(w S8 = (S+Al)w" —§= —de,

whose projection on the probability simplex is
* 1 T * 1
Og(w';S8) — 1 (1'Og(w";S§))1=58( 1-a ). (13)

The direction of the steepest descent given by the negative of themwjgradient in (13) indicates
that the new optimal solution will have an increasedwhich satisfies the first design goal.

Similarly, if we instead perturB by addingd > O to its (i, j)-entry { # j), that is,S=S+ OEij,
wherekE;; denotes the matrix withi, j)-entry 1 and 0 elsewhere, then

Ogw*;Ss) = (S+Aw* —s=dw}e,

whose projection on the probability simplex is

Dg(w*;é,s)—% (1TDg(W*;§s)) 1=23wj <a —il). (14)
The direction of the steepest descent given by the negative of themjgradient in (14) indicates
that the optimal solution will have a decreasedwhich satisfies the second design goal.
Experimentally, we found little statistically significant difference between usegative en-
tropy or ridge regularization for the KRI weights. Analytically, entropyulegization leads to an
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exponential form for the weights that can be used to prove consistémigdiander and Gupta,
2006). Computationally, the ridge regularizer is more practical becaussuilts in a QP with box
constraints and an equality constraint if Benatrix is PSD or approximated by a PSD matrix, and
can thus be solved by the SMO algorithm (Platt, 1998).

5.2.1 KERNEL RIDGE REGRESSIONWEIGHTS

A closed-form solution to (12) is possible if one relaxes the problem by vamgdhe constraints
w; € [0,1] andy;w; = 1 that ensure the weights form a probability mass function. Then for&SD
the objectivelw’ Sw—s"w+ 2Aw'w is solved by

w=(S+A)"1s (15)

The k-NN decision rule (9) using these weights is equivalent to classifying byimaixg the
discriminant of a local kernel ridge regression. For each dasg;, local kernel ridge regression
(without intercept) solves

k

minimize ; (Iyi—g) — (Bg- @(x)))* + A (Bg, By, (16)

By

where @ denotes the mapping from the sample sp&céo a Hilbert space with inner product
(@(%),@(xj)) = W(x,X;). Each solution to (16) yields the discriminafgtx) = (Bg, ®(X)) = Vg(s-i-
Al)~*sfor classg (Cristianini and Shawe-Taylor, 2000), whexe= [l,—g1 - I{yk:g}]T. Max-
imizing fg(x) overg € G produces the same estimated class label as (9) using the weights given
in (15), thus we refer to these weightskasnel ridge regressio(KRR) weights.

For a non-PSL5, it is possible thaS+ Al is singular. In the experiments, we compare handling
non-PSDSby clip, flip, shift, or taking the pseudo-inverse (pirt®+Al)T.

5.2.2 ILLUSTRATIVE EXAMPLES

We illustrate the KRI and KRRweights with three toy examples shown on the next page. For each
example, there arle= 4 nearest-neighbors, and the KRl and KRR weights are shown foge i&n
regularization parametev.

In Example 1, affinity is illustrated. One sees frarthat the four distinct training samples are
not equally similar to the test sample, and fr@that the training samples have zero similarity to
each other. Both KRI and KRR give more weight to training samples that are simoilar to the
test sample, illustrating that the weighting methods achieve the design goahiyaf

In Example 2, diversity is illustrated. The four training samples all have similaritythe test
sample, buk, andxs are very similar to each other, and are thus weighted down as prescréed th
by the design goal of diversity. Because of the symmetry of the similaritiesyeights forx, and
x3 are exactly the same for both KRI and KRR.

In Example 3, the interaction between the two design goals is illustrated S Tirerix is the
same as in Example 2, batis no longer uniform. In fact, althougk is less similar to the test
sample tharxs, X1 receives more weight because it is less similar to other training samples. The

5. For the purpose of comparison, we show the normalized KRR weightisefew = ( — %11T) W+ %l. This does
not affect the result of classification since each weight is shifted byatme £onstant.
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affinity goal allots the largest weight to the most similar neighkgrbut because, andxs are
highly similar, the diversity goal forces them to share weight, resulting neceiving little weight.

One observes from these examples that the KRR weights tend to be smoaimehehkKRI
weights, because the KRI weights are constrained to a probability simpldg, v KRR weights
are unconstrained.

6. Generative Classifiers

Generative classifiers provide probabilistic outputs that can be easdg fuish other probabilistic
information or used to minimize expected misclassification costs. One approgeherative clas-
sification given similarities is using the similarities as features to define@mensional feature
space, and then fitting standard generative models in that space, asdouSection 3. However,
this requires fitting generative models withdata points (or less for class-conditional models) in
an n-dimensional space. Another generative framework for similarity-bakessification termed
similarity discriminant analysi$SDA) has been proposed that models the class-conditional distri-
butions of similarity statistics (Cazzanti et al., 2008). First we review the &3%& model, then
consider a local variant (Cazzanti and Gupta, 2007) and a mixture madeht/that were both
designed to reduce bias.

Let X denote a random test sample andenote a realization 0X. Assume that the relevant
information about the class label ¥fis captured by a finite sef (X) of M descriptive statistics,
where themth descriptive statistic is denotegh(X). In this paper, we take the set of descriptive
statistics to be the similarities to class centroids:

T(X) = {LIJ(X7M1)7LIJ(X7 H2)7-~-7LU(X’UG)}7 (17)

wherepg € Q is a centroid for thegth class, ands is the number of classes. Although there are
many possible definitions of a centroid given similarities, in this paper a clas®ibis defined to
be the training sample that has maximum sum-similarity to the other training sampleslaggs c
The centroid-based descriptive statistics given by (17) were showe tvérall more effective
than other considered descriptive statistics on simulations and a small sel-dfata experiments
(Cazzanti, 2007).

The classification rule for SDA to minimize the expected misclassification codassify x as
the class

y=argmin’s C(@HP(T(|Y =HP(Y =h) (18)

whereC(g, h) is the cost of classifying a sample as clgstthe truth is class.
To estimate the class-conditional distributicgi¥ 7 (x) |Y = g)}g:1 the SDA model estimates

the expected value of theth descriptive statisti@m(X) with respect to the class conditional distri-
butionP(Z (x) |Y = g) to be the average of the training sample data for each glass

1

E X (Tm(x)) = T+
PIT()|0) BA ZEZXQ

Tm(2), (19)

whereXj is the set of training samples from clagsGiven theG x G constraints specified by (19),
the SDA model estimates each class-conditional distribution as the solution) twi{th9naximum
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entropy, which is the exponential (Jaynes, 1982):

G
P(T(x)|g) = Dlygme}\gmr[mw' (20)

Substituting the maximum entropy solution (20) into (18) yields the SDA classificatle: classify
x as the class .
y=argmin z C(g,h)P(Y =h) I—l Vhme ()
%G heg m=1
Each pair of parametef3ym, Ygm) Can be separately calculated from the constraints given in (19)
by one-dimensional optimization and normalization.

6.1 Reducing SDA Model Bias

The SDA model may not be flexible enough to capture a complicated decisimalary. To address
this model bias issue, one could apply SDA locally to a neighborhoddnefarest neighbors for
each test point, or learn a mixture SDA model.

In this paper we experimentally compareldcal SDA(Cazzanti and Gupta, 2007) with local
centroid-similarity descriptive statistics given by (17), in which SDA is apptedhe k nearest
neighbors of a test point, where the paramétey trained by cross-validation. If any class in the
neighborhood has fewer than three samples, there are not enougdadgikes to fit distributions
of similarities, so every\ is assumed to be zero, and the local SDA model is reduced to a simple
local centroid classifier. Given a discrete set of possible similarities, BD& has been shown
to be a consistent classifier in the sense that its error converges to the &agr under the usual
asymptotic assumption that when the number of training sammplesew, the neighborhood size
k — oo butk grows relatively slowly such th&/n — 0 (Cazzanti and Gupta, 2007).

Cazzanti (2007) explored mixture SDA models analogous to Gaussian mmadels (GMM).
He fits SDA mixture models, producing the following decision rule:

G cm
y =alg min C(g7 h) P(Y = h) |_| Z nglygmld\gmlw(X,UmI) ,
956 heg m=1151

whereElewrm =1, andwpy, > 0. The number of componerttg are determined by cross-validation.
The component weightSvgm } and the component SDA parameté(agmi, Ygmi) } are estimated by
an expectation-maximization (EM) algorithm, analogous to the EM-fitting of a Giehdept that
the centroids are calculated only once (rather than iteratively) at therbieginsing ak-medoids
algorithm (Hastie et al., 2001). Simulations and a small set of experimentedhbat this mixture
SDA performed similarly to local SDA, but the model training for mixture SDA wasch more
computationally intensive.

7. Experiments

We compare eight similarity-based classification approaches: a lineand&BRSVM using sim-
ilarities as features, the P-SVM (Hochreiter and Obermayer, 2006),zah 8¢M (SVM-KNN)
(Zhang et al., 2006) and a global SVM using the given similarities as a lkéoeal SDA, k-NN,

and the three weightddNN methods discussed in Section 5: the proposed KRR and KRI weights,
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and affinity weights as a control, defined Wwy= af(x, %), i = 1,...,k, whereais a normalization
constant. Results are shown in Table 3 and 4.

For algorithms that require a PSH) we makeS PSD by clip, flip or shift as discussed in
Section 2, and pinv for KRR weights. The results in Table 3 are for clip;tper@mental differences
between clip, flip and shift, and pinv are shown in Table 4 and discusseztiios 7.4.

7.1 Data Sets

We tested the proposed classifiers on eight real daté gigesenting a diverse set of similarities
ranging from the human judgement of audio signals to sequence alignmenuteins.

The Amazon-47data set, created for this paper, consists of 204 books written by 47rautho
Each book listed oamazon.com links to the top four books that customers bought after viewing it,
along with the percentage of customers who did so. We take the similarity ofAvémkook B to
be the percentage of customers who bought B after viewing A, and thefidagon problem is to
determine the author of the book.

The Aural Sonardata set is from a recent paper which investigated the human ability to distin-
guish different types of sonar signals by ear (Philips et al., 2006). sigreals were returns from
a broadband active sonar system, with 50 target-of-interest signalSCaolditter signals. Every
pair of signals was assigned a similarity score from 1 to 5 by two randomlyeaiusman subjects
unaware of the true labels, and these scores were added to prod00exd.A0 similarity matrix
with integer values from 2 to 10.

The Caltech-101data set (Fei-Fei et al., 2004) is an object recognition benchmark data se
consisting of 8677 images from 101 object categories. Similarities betweersmagge computed
using the pyramid match kernel (Grauman and Darrell, 2007) on SIFTrésatuowe, 2004). Here,
the similarity is PSD.

The Face Redata set consists of 945 sample faces of 139 people from the NIST EaogR
nition Grand Challenge data setThere are 139 classes, one for each person. Similarities for
pairs of the original three-dimensional face data were computed as time cmilarity between
integral invariant signatures based on surface curves of the faceg @t al., 2007). The original
paper demonstrated comparable results to the state-of-the-art usingithédagties with a 1-NN
classifier.

The Mirex07 data set was obtained from the human-rated, fine-scale audio similaritystata u
in the MIREX 2007 Audio Music Similarity and Retriefaiask. Mirex07 consists of 3090 samples,
divided roughly evenly among 10 classes that correspond to diffamesic genres. Humans judged
how similar two songs are on a 0-10 scale with 0.1 increments. Each songgsaavaluated by
three people, and the three similarity values were averaged. Self-similagtasgamed to be 10,
the maximum similarity. The classification task is to correctly label each song witkritgeg

The Patrol data set was collected by Driskell and McDonald (2008). Members efnspatrol
units were asked to name five members of their unit; in some cases the rasigondecurately
named people who were not in their unit, including people who did not belorgnyaunit. Of
the original 385 respondents and named people, only the ones that aveesl rat least once were

6. The data sets along with the randomized partitions are availabléttmtidl.ee.washington.edu/
SimilarityLearning/

7. For more information, sestp://face.nist.gov/frgc/

8. For more information, seéttp://www.music-ir. org/m|rex/2007/|ndex php/Audio_ Music_Similarity
and_Retrieval
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kept, reducing the data set to 241 samples. The similarity between any twte @eapd b is
(N(a,b) +N(b,a))/2, whereN(a,b) is the number of times pers@names persoh. Thus, this
similarity @ has a rang€0,0.5,1}. The classification problem is to estimate to which of the seven
patrol units a person belongs, or to correctly place them in an eighth cktssottiesponds to “not

in any of the units.”

TheProteindata set has sequence-alignment similarities for 213 proteins from 4s;faskere
class one through four contains 72, 72, 39, and 30 samples, reghefiofmann and Buhmann,
1997). As further discussed in the results, we define an additional simitarityedRBF-simfor
the Protein data setprer(X;,x)) = e~ I15%)=X)l2 wheres(x) is the 213x 1 vector of similarities
with mth componentp(X, Xm).

TheVotingdata set comes from the UCI Repository (Asuncion and Newman, 203 a two-
class classification problem with 435 samples, where each sample is a itkfgature vector with
16 components and three possibilities for each component. We compute teelifBdtence metric
(Stanfill and Waltz, 1986) from the categorical data, which is a dissimilarityubes the training
class labels to weight different components differently so as to achievemmaxprobability of
class separation.

Shown in Figure 1 are the similarity matrices of all the data sets. The rows &mthrt® are
ordered by class label; on many of the data sets, particularly those withea fexmber of classes,
a block-diagonal structure is visible along the class boundaries, indibgiteéck marks. Note that
a purely block-diagonal similarity matrix would indicate a particularly easy ileason problem,
as objects have nonzero similarity only to objects of the same class.

7.2 Other Experimental Details

For each data set, we randomly selected 20% of the data for testing anthasednaining 80%
for training. We chose the classifier parameters sud@ &8 the SVM, A for the KRI and KRR
weights, andk for local classifiers by 10-fold cross-validation on the training set, ard tised
them to classify the held out test data. This process was repeated fan@6m partitions of
test and training data, and the statistical significance of the classificatmmweas computed by a
one-sided Wilcoxon signed-rank test. Multiclass implementations of the SVMifitas used the
“one-vs-one” scheme (Hsu and Lin, 2002).

Nearest neighbors for local methods were determined using symmetrized risiesi&
2 (W(x,%) +P(x,X)). Cross-validation choices are listed in Table 2. These choices weré base
recommendations and usage in previous literature, and on preliminaryiregpés we conducted
with a larger range of cross-validation parameters on the Voting and Pdat&irsets.

7.3 Results

The mean and standard deviation (in parentheses) of the error ae@ksrdmdomized test/training
partitions are shown in Table 3. The bold results in each column indicate ths#fila®ith lowest
average error; also bolded are any classifiers that were not statissicaiificantly worse than the
classifier with lowest average error.

9. The original data set has 226 samples with 9 classes. As is standatit@mith this data set, we removed those
classes which contain less than 7 samples.
10. Only Amazon-47 and Patrol are natively asymmetric.
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Amazon-47 Aural Sonar Caltech-101
| L \_\ L HH\\\\H_H\HHHHH\HH_\ULULUU!U _ _
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I 1T Y Y

Protein RBF-sim \oting

S

Figure 1: Similarity matrices of each data set with class divisions indicated bynigcks; black
corresponds to maximum similarity and white to zero.

The similarity matrices in Figure 1 show that Aural Sonar and Voting exhibliyfaice block-
diagonal structures, indicating that these are somewhat easy classifipegldems. This is re-
flected in the relatively low errors across the board and few statisticallyfiseym differences in
performance. More interesting results can be observed on the moreltiffassification problems
posed by the other data sets.
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All local methods ke 1,2,3,...,16,32,64,128
KRR A 103,102,...,10

KRI A 106,10°5,...,10 and 16
PSVM e 10410°3,...,10

PSVM C: 10°,10,...,10

SVM-KNN C: 103%1072...,10°

SVM (linear, clip, flip, shift)y C: 1073,1072,...,10°

SVM (RBF) C: 10°3...,10

SVM (RBF) y. 107510%,...,10

Table 2: Cross-validation Parameter Choices

The Amazon-47 data set is very sparse with at most four non-zero simgguitierow. With
such sparse data, one might expect a 1-NN classifier to perform wedkdnidr the uniformk-NN
classifier, the cross-validation choke= 1 on all 20 of the randomized partitions. For all of the
local classifiers, th& chosen by cross-validation on this data set was never largeiktaad, and
out of the 20 randomized partitionk,= 1 was chosen the majority of the time for all the local
classifiers. In contrast, the global SVM classifiers perform poorly msiarse data set. The Patrol
data set is the next sparsest data set, and the results show a similar phiteener, the Mirex data
set is also relatively sparse, and yet the global classifiers do well, iicydar the SVMs that use
similarities as features. The Amazon-47 and Patrol data sets do diffetliMirex data set in that
the self-similarities are not always maximal. Whether (and how) this differeaases or correlates
the relative differences in performance is an open question.

The Protein data set exhibits large differences in performance, with titistdly significantly
best performances achieved by two of the three SVMs that use similarigaagds. The reason
that similarities on features performs so well while others do so poorly caede in the Protein
similarity matrix in Figure 1. The first and second classes (roughly the figtsacond thirds of
the matrix) exhibit a strong interclass similarity, and rows belonging to the sams®etaibit very
similar patterns, thus treating the rows of the similarity matrix as feature vectov&dps good
discrimination of classes. To investigate this effect, we transformed the elatiseset using a
radial basis function (RBF) to create a similarity based on the Euclidean ckstatween rows
of the original similarity matrix, yielding the 218 213 Protein RBF similarity matrix. One sees
from Table 3 that this transformation increases the performance of adassiftross the board,
indicating that this is indeed a better measure of similarity for this data set. Fudherafter this
transformation we see a complete turnaround in performance: for PrddintRe SVMs that use
similarities as features are among the worst performers (with P-SVM stithmeifig decently), and
the basidk-NN does better than the best classifier given the original Protein similarities.

The Caltech-101 data set is the largest data set, and with 8677 samplesiask@k, an analysis
of the structure of this similarity matrix is difficult. Here we see the most dramatiares@ment in
performance (25% lower error) by using the KRR and KRI weights rdttark-NN or the affinity
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Amazon-47 | Aural Sonar | Caltech-101

k-NN 16.95 (4.85)17.00 (7.65)41.55 (0.95)
affinity k-NN 15.00 (4.77)15.00 (6.12)/39.20 (0.86)
KRI k-NN (clip) 17.68 (4.75)14.00 (6.82)[30.13 (0.42)
KRR k-NN (pinv) 16.10 (4.90)[15.25 (6.22)29.90 (0.44)
Local SDA 16.83 (5.11)17.75 (7.66)41.99 (0.52)
SVM-KNN (clip) 17.56 (4.60)13.75 (7.40)|36.82 (0.60)

SVM-similarities as kernel (clip) [81.34 (4.77)13.00 (5.34)/33.49 (0.78)
SVM-similarities as features (linegrj6.10  (6.92)14.25 (6.94)/38.18 (0.78)
SVM-similarities as features (RBF)75.98 (7.33)14.25 (7.46)|38.16 (0.75)

P-SVM 70.12 (8.82)14.25 (5.97)34.23 (0.95)
Face Rec Mirex Patrol
k-NN 423 (1.43)|61.21 (1.97)11.88 (4.42)
affinity k-NN 423 (1.48)|61.15 (1.90)11.67 (4.08)
KRI k-NN (clip) 415 (1.32)/61.20 (2.03)11.56 (4.54)
KRR k-NN (pinv) 431 (1.86)61.18 (1.96)12.81 (4.62)
Local SDA 455 (1.67)60.94 (1.94)11.77 (4.62)
SVM-KNN (clip) 423 (1.25)61.25 (1.95)11.98 (4.36)

SVM-similarities as kernel (clip) 418 (1.25)57.83 (2.05)38.75 (4.81)
SVM-similarities as features (linear)4.29 (1.36)55.54 (2.52)|42.19 (5.85)
SVM-similarities as features (RBF) 3.92 (1.29)/55.72 (2.06)|40.73 (5.95)

P-SVM 4.05 (1.44)]63.81 (2.70)40.42 (5.94)
Protein Protein RBF \oting
k-NN 29.88 (9.96) 0.93 (1.71)] 5.80 (1.83)
affinity k-NN 30.81 (6.61) 0.93 (1.71)] 5.86 (1.78)
KRI k-NN (clip) 30.35 (9.71) 1.05 (1.72)| 5.29 (1.80)
KRR k-NN (pinv) 9.53 (5.04) 1.05 (1.72)] 552 (1.69)
Local SDA 17.44 (6.52) 0.93 (1.71)| 6.38 (2.07)
SVM-KNN (clip) 11.86 (5.50) 1.16 (1.72)] 5.23 (2.25)

SVM-similarities as kernel (clip) 535 (4.60) 1.16 (1.72)| 4.89 (2.05)
SVM-similarities as features (linear)3.02 (2.76) 2.67 (2.12) 5.40 (2.03)
SVM-similarities as features (RBF) 2.67 (2.97)] 2.44 (2.60) 5.52 (1.77)
P-SVM 1.86 (1.89) 1.05 (1.56) 5.34 (1.72)

Table 3: % Test misclassified averaged over 20 randomized test/traintitgppar
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k-NN, suggesting that there are highly correlated samples that bias the#icdiss. In contrast,
for the Amazon-47, Aural Sonar, Face Rec, Mirex, and Patrol dasatisere is only a small win
by using the KRI or KRR weights, or a statistically insignificant small decline nfiopeance (we
hypothesize this occurs because of overfitting due to the additional prakjie On Protein the
KRR error is 1/3 the error of the other weighted methods; this is a conseguémising the pinv
rather than other types of spectrum modification, as can be seen frdedTakhe other significant
difference between the weighting methods is a roughly 10% improvementriaiggverror on Voting
by using the KRR or KRI weights. In conclusion, the use of diverse weigtay not matter on some
data sets, but can be very helpful on certain data sets.

SVM-KNN was proposed by Zhang et al. (2006) in part as a way toaedie computations
required to train a global SVM using similarities as a kernel, and their resutgeshthat it per-
formed similarly to a global SVM. That is somewhat true here, but some iféers emerge. For the
Amazon-47 and Patrol data sets the local methods all do well including SYIM;HKut the global
methods do poorly, including the global SVM using similarities as a kernel. Omwttier hand,
the global SVM using similarities as a kernel is statistically significantly better thévi-ENN
on Caltech-101, even though the best performance on that data shtegeacby a local method
(KRR). From this sampling of data sets, we conclude that applying the SV&llyoor globally
can in fact make a difference, but whether it is a positive or negativerdifce depends on the
application.

Among the four global SVMs (including P-SVM), it is hard to draw conclasi@bout the
performance of the one that uses similarities as a kernel versus the thtaes¢hsimilarities as
features. In terms of statistical significance, the SVM using similarities aselkentperforms the
others on Patrol and Caltech-101 whereas it is the worst on AmazondiPratein, and there is
no clear division on the remaining data sets. Lastly, the results do not satistisally significant
differences between using the linear or RBF version of the SVM with similaagdsatures except
for small differences on Face Rec and Patrol.

7.4 Clip, Flip, or Shift?

Different approaches to modifying similarities to form a kernel were dsedisn Section 2.1. We
experimentally compared clip, flip, and shift for the KRI weights, SVM-KNidd SVM, and flip,
clip, shift and pinv for the KRR weights on the nine data sets. Table 4 shavBvih data sets
for which at least one method showed statistically significantly differentitsedepending on the
choice of spectrum madification.

For KRR weights, one sees that the pinv solution is never statistically sigrificaorse than
clip, flip, or shift, which are worse than pinv at least once. For KRI wesigthe differences are
negligible, but based on average error we recommend clip.

Flip takes the absolute value of the eigenvalues, which is similar to the effesiraf SS (as
discussed in Section 2.1.5), which for an SVM is equivalent to using the SKNimilarities-as-
features. Thus it is not surprising that for the Protein data set, whichawe$een in Table 3 works
best with similarities as features, flip makes a large positive differenceMbt-BNN and SVM.
One sees different effects of the spectrum modification on the local metieosus the global SVMs
because for the local methods the modification is only done locally.
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KRI KRR
Amazon Mirex Patrol Protein Voting Amazon Mirex Patrol Ryiot Voting
clip 17.68 61.20 11.56 30.35 5.34 16.261.22 11.67 30.35 5.34
flip 17.56 61.17 11.67 31.28 5.34 16.22 61.12.08 30.47 5.29
shift  17.68 61.2513.23 30.35 5.29 16.34 61.25 11.88 30.35 5.52
pinv - - - - - 16.10 61.18 12.81 9.53 5.52
SVM-KNN SVM
Amazon Mirex Patrol Protein \oting Amazon Mirex Patrol Ryiot Voting
clip 17.56 61.25 11.98 11.86 5.23 81.34 57.83 38.75 535 4.89
flip 17.56 61.25 11.88 1.74 5.23 84.27 56.34 47.29 151 494
shift 1756 61.25 11.8830.23 5.34 77.68 85.29 40.83 23.49 5.17

Table 4: Clip, flip, shift, and pinv comparison. Table shows % test misclagsifieraged over 20
randomized test/training partitions for the five data sets that exhibit statisticafificamt
differences between these spectrum modifications. If there are statissiicalficant dif-
ferences for a given algorithm and a given data set, then the wonrs, stwd scores not
statistically better, are shown in italics.

8. Conclusions and Some Open Questions

Similarity-based learning is a practical learning framework for many probiarbginformatics,
computer vision, and those regarding human similarity judgement. Kernel nsethodbe applied
in this framework, but similarity-based learning creates a richer set diecigaes because the data
may not be natively PSD.

In this paper we explored four different approximations of similarities: aligpflipping, and
shifting the spectrum, and in some cases a pseudoinverse solution. Exgatirasults show small
but sometimes statistically significant differences. Based on the theorestéitation and results,
we suggest practitioners clip. Flipping the spectrum does create sigtlifibatter performance for
the original Protein problem because, as we noted earlier, flipping tliotrgpehas a similar effect
to using the similarities as features, which works favorably for the origirateih problem. How-
ever, it should be easy to recognize when flip will be advantageous, yrtbdisimilarity as we did
for the Protein RBF problem, and possibly achieve even better resultze@wng approximating
similarities, we addressed the issue of consistent treatment of training arsdngsles when ap-
proximating the similarities to be PSD. Although our linear solution is consistentpwmtargue
it is optimal, and consider this issue still open.

A fundamental question is whether it is more advisable to use the similarities @eslker
features. We showed that the difference for SVMs is in the regularizatimhthat for similarities-
as-kernels generalization bounds can be proven using standarshgetireory machinery. How-
ever, it is not straightforward to apply standard learning theory maghtoesimilarities-as-features
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because the normal Rademacher complexity bounds do not hold with thengswaaptive non-
independent functions. To address this, we considered splitting the traeinnto prototypes for
similarities-as-features and a separate set to evaluate the empirical risk.tHen, we were only
able to show generalization bounds if the number of prototypes grows sl@elyplementary re-
sults have been shown for similarities-as-features by Balcan et al. @08 Wang et al. (2007),
but further analysis would be valuable. Experimentally, it would be intergstimvestigate meth-
ods using prototypes and performance as the number of training sampleasies, ideally with
larger data sets than those used in our experiments.

We proposed design goals of affinity and diversity for weighting neareighbors, and sug-
gested two methods for constructing weights that satisfy these design goalstimental results
on eight diverse data sets demonstrated that the proposed wekgRi¢dnethods can significantly
reduce error compared to stand&®N. In particular, on the largest data set Caltech-101, the
proposed KRI and KRR weights provided a roughly 25% improvement kN and affinity-
weightedk-NN. The Caltech-101 similarities are PSD, and it may be that the KRl and KRR-me
ods are sensitive to approximations of the ma&iPreliminary experiments using the unmodified
local Sand solving KRI or KRR objective functions using a global optimizer shoadhcrease
in performance but at the price of greatly increased computational casnpé&red to the local
SVM (SVM-KNN), the proposed KRR weights were statistically significantlyrseoon the two-
class data sets Aural Sonar and Patrol, but statistically significantly betteotbrof the highly
multi-class data sets, Amazon-47 and Caltech-101.

Overall, the results show that local methods are effective for similaritgebésarning. It is
tempting from the obvious discrepancy between the performance of Indajlabal methods on
Amazon and Patrol to argue that local methods will work best for spamséasties. However,
Mirex is also relatively sparse, and the best methods are global. The ArnaazbPatrol data sets
are different from the other data sets in that they are the only two data gbat®en-maximal
self-similarities, and this issue may be the root of the discrepancy. For eetdods an open
question not addressed here is how to efficiently find nearest-ne®lgben only similarities.
Some research has been done in this area, for example Goyal et &) (&3@loped methods for
fast search with logarithmic query times that depend on how “disordereditthitarity is, where
they measure a disorder constBnof a set of samples as tiiethat ensures that ¥ is thekth most
similar sample t, andx; is theqgth most similar sample t®, thenx is among theD(q+ k) most
similar samples ta;.

Lastly, we note that similarity-based learning can be considered a spas&bt graph-based
learning (see, for example, Zhu, 2005), where the graph is fully-ected. However, most graph-
based learning literature addresses the problem of semi-superviseithdearhile the similarity-
based learning algorithms discussed in this paper are mainly for supetem®ing. We have
seen no cross-referential literature between these two fields, and inssamopen question which
techniques developed for one problem will be useful for the otherdg@nmobnd vice versa.
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Appendix A.

Proof of Proposition 1: Recall the eigenvalue decompositi&gip, = urf AcipU. After removing
the zero elgenvalues icip and their corresponding eigenvectorddnandUT, one can express
Siip = gt /\c"pU where/\dIp is anm x mdiagonal matrix withmthe number of nonzero eigenvalues

andU an m x n matrix satisfying0UT = |. The vector representation of the training samples
implicitly used viaSp is X = /\Cﬁf,u Given test similarity vectos, the least-squares solution to

the equation’XTx =sis x = (XXT) "~ 1Xs Let § be the vector of the inner products between the
embedded test sampteand the embedded training sampleshen

§=XTx=XT (XXT) "Xs=UTUs=U"MgjpUs = Peips. 7

The proofs of the generalization bounds of Theorem 1 and Theoresty 2n bounding the
Rademacher complexity of the function clasgandF, respectively. We provide the definition of
Rademacher complexity here for convenience.

Definition 1 (Rademacher Complexity) SupposeX = {Xi, Xy, ..., Xy} are samples drawn inde-
pendently from a distribution of2, and let F be a class of functions mapping fréhio R. Then,

the Rademacher complexity of F is
2 n
_ : f g
ni:§ Oi (X|) )

whereo = {01,02,...,0n} is a set of independent uniforfa-1}-valued random variablé$ such
that P(o;j = 1) = P(0; = —1) = 1/2for all i.

feF

Rx(F) =Egx (sup

The following lemma establishes that for a class of bounded functiorthe generalization
error for anyf € F is bounded above by a function B, (f,L) and Ry (F).

Lemma 1 (Bartlett and Mendelson, 2002, Theorem 7upposé€X,Y) and the elements db are
drawn i.i.d. from a distribution o2 x {+1}. Let F be a class of bounded real-valued functions
defined orQ2 such thatsup g sup.q | f(X)| < . Suppose LR — [0,1] is Lipschitz with constant
C and satisfies (&) > I;a<qy. Then with probability at least — & with respect taD, every function

in F satisfies

In(2/3)
2n

For the proof of Theorem 1, we also require the following bound on tlteRa@acher complexity
of kernel methods.

P(Y f(X) < 0) < Rp(f,L)+2CRn(F) +

Lemma 2 (Bartlett and Mendelson, 2002, Lemma 225uppose the elements ©f are drawn
iid. from a distribution on Q x {+1}. Let K denote the set of functions

{f(x) = 3 aiK(X,X) | ¥ 0iajK(X, X)) < [32}, then by Jensen’s inequality,

E (K(X,X))

Rp(Fx) <2B n

11. Such random variables are calleddemacher random variablesd their distribution is called thRademacher
distribution
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Proof of Theorem 1: Theorem 1 is an application of Lemma 1 and 2 for the function dfass
{f(s) =wTs|w'Sw< B2}. By replacing the kernel functiok in Lemma 2 withy, and noticing
E (W(X,X)) < k? sincey(a,a) < k? for all a€ Q, we haveRy(Fs) < 2Bk+/1/n. It can be verified
that the function clasBs is bounded a$f (s)| < Bk for all f € Fs, and thus we can apply Lemma 1.
Noting thatL; is Lipschitz withC = 1 completes the proof. [ |

Proof of Theorem 2: Recall thas= [Y(x,%1) ... WY(X, )"(ng]T where{(%1,%1),..., (%m,¥m)} € D

is a subset of the training data afit= D\{(X1,¥1),- -, (Xm,¥m)} is the remaining training set. Itis
tempting to apply Lemma 2 with the linear kernel, but in this case, this does noyshgsiefinition

of the function class$y = {f(§) =w'§|w'w < B2} defined on these prototypes. The following
bound on the Rademacher complexity mirrors that of Bartlett and Mende28@2(Lemma 22),
but requires an important modification noted below:

23 ot
(Zos)
)

2

fer

R%(H) = E@0 (sup

)

2 T
< HE@’O ( sup |w

[wil2<B

(a) 2E B n—m
< -E: 0§
n Po i;

ZE@o 0i0;§ §;)

n

m
< 2BKZ, [ —
<2B vV

where (a) follows from the Cauchy-Schwarz inequafitgnd (b) follows from Jensen’s inequality.
It can be verified that the function class is boundedf#8)| < pk?/mfor all f € F, and thus
we can apply Lemma 1. As before, noting thats Lipschitz withC = 1 completes the proof. B

The proof of Theorem 2 illustrates why using similarities as features hasrampguarantee on
the generalization than using similarities as a kernel. Specifically, the fundtiss corresponding

12. Note that in the proof of Theorem 1 and in Bartlett and Mendelsor2(2@mma 22) the Cauchy-Schwartz inequality
is applied in the RKHS space whereas here it is appliefin
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to regularization ow'w is too large. Of course, this flexibility can be mitigated by using only a
set ofm prototypes whose size grows @31), which can be seen as an additional form of capacity
control.

References

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic l@@ynment search
tool. J. Molecular Biology 215(3):403-410, Oct. 1990.

A. Asuncion and D. J. Newman. UCI machine learning repository, 2001 kitp://www.ics.
uci.edu/ ~mlearn/MLRepository.html

M.-F. Balcan, A. Blum, and N. Srebro. A theory of learning with similarity ftiaes. Machine
Learning 72(1-2):89-112, Aug. 2008a.

M.-F. Balcan, A. Blum, and N. Srebro. Improved guarantees for legmia similarity functions.
In Proc. Ann. Conf. Learning Thear2008b.

P. L. Bartlettand S. Mendelson. Rademacher and Gaussian complexikfioRnds and structural
results.J. Machine Learning ResearcB:463-482, Nov. 2002.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object igdoagrsing shape contexts.
IEEE Trans. Pattern Anal. and Machine Int€24(4):509-522, April 2002.

I. Borg and P. J. F. GroeneRodern Multidimensional Scaling: Theory and ApplicatioBgringer,
New York, 2nd edition, 2005.

L. Cazzanti.Generative Models for Similarity-based Classificati®thD thesis, Dept. of Electrical
Engineerng, University of Washington, 2007.

L. Cazzanti and M. R. Gupta. Local similarity discriminant analysisPioc. Intl. Conf. Machine
Learning 2007.

L. Cazzanti, M. R. Gupta, and A. J. Koppal. Generative models for simitheged classification.
Pattern Recognitiod1(7):2289-2297, July 2008.

J. Chen and J. Ye. Training SVM with indefinite kernels.Piroc. Intl. Conf. Machine Learning
2008.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector MachineSambridge Uni-
versity Press, Cambridge, UK, 2000.

J. E. Driskell and T. McDonald. Identification of incomplete networks. hfécal report, Florida
Maxima Corporation, 2008.

R. O. Duda, P. E. Hart, and D. G. StoRattern ClassificationJohn Wiley & Sons, New York, 2nd
edition, 2001.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative viswgglstsom few training examples:
An incremental Bayesian approach tested on 101 object categoriegsmxdnEEE Computer Soc.
Conf. Computer Vision and Pattern Recogniti@d04.

773



CHEN, GARCIA, GUPTA, RAHIMI AND CAZZANTI

S. Feng, H. Krim, and I. A. Kogan. 3D face recognition using Euclidetegial invariants signa-
ture. InProc. IEEE Workshop Statistical Signal Processiag07.

M. P. Friedlander and M. R. Gupta. On minimizing distortion and relative entrpEE Trans.
Information Theory52(1):238-245, Jan. 2006.

I. Gati and A. Tversky. Representations of qualitative and quantitaiertsions.J. Experimental
Psychology: Human Perception & Performan&€2):325-340, April 1982.

I. Gati and A. Tversky. Weighting common and distinctive features in péued and conceptual
judgments.Cognitive Psychologyl6(3):341-370, July 1984.

R. L. Goldstone and A. KersterComprehensive Handbook of Psychologylume 4, chapter 22:
Concepts and Categorization, pages 599-621. Wiley, New Jersey, 200

N. Goyal, Y. Lifshits, and H. Sdltze. Disorder inequality: A combinatorial approach to nearest
neighbor search. IRroc. ACM Symposium Web Search and Data Min2@f8.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer.sflilzegtion on pairwise prox-
imity data. InAdvances in Neural Information Processing SystetfiS8.

T. Graepel, R. Herbrich, B. Solkopf, A. Smola, P. Bartlett, K.-R. Mler, K. Obermayer, and
R. Williamson. Classification on proximity data with LP—machinesPitac. Intl. Conf. Artificial
Neural Networks1999.

K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning sétk of featuresJ.
Machine Learning ResearcB:725-760, April 2007.

M. R. Gupta, R. M. Gray, and R. A. Olshen. Nonparametric supervisediley by linear interpola-
tion with maximum entropylEEE Trans. Pattern Anal. and Machine Inte28(5):766—781, May
2006.

B. Haasdonk. Feature space interpretation of SVMs with indefinite kertHelsE Trans. Pattern
Anal. and Machine Inte|27(4):482—-492, April 2005.

T. Hastie, R. Tibshirani, and J. Friedmahe Elements of Statistical Learning: Data Mining,
Inference, and PredictianSpringer, New York, 2001.

N. J. Higham. Computing a nearest symmetric positive semidefinite matngar Algebra and its
Applications 103:103-118, May 1988.

S. Hochreiter and K. Obermayer. Support vector machines for dyadic Neural Computation
18(6):1472-1510, June 2006.

T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministialingel EEE Trans.
Pattern Anal. and Machine Intel19(1):1-14, Jan. 1997.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass suppotoretachinesIEEE
Trans. Neural Networksl 3(2):415-425, March 2002.

774



SIMILARITY -BASED CLASSIFICATION

E. T. Jaynes. On the rationale for maximum entropy methé&udsc. IEEE 70(9):939-952, Sept.
1982.

T. Knebel, S. Hochreiter, and K. Obermayer. An SMO algorithm for themqt@al support vector-
machine.Neural Computation20(1):271-287, Jan. 2008.

J. Laub and K.-R. Miller. Feature discovery in non-metric pairwise dath.Machine Learning
Research5:801-808, July 2004.

J. Laub, V. Roth, J. M. Buhmann, and K.-R.UNer. On the information and representation of
non-Euclidean pairwise dat®attern Recognition39(10):1815-1826, Oct. 2006.

L. Liao and W. S. Noble. Combining pairwise sequence similarity and suppotbr machines for
detecting remote protein evolutionary and structural relationsdipSomputational Biologyl0
(6):857-868, 2003.

H.-T. Lin and C.-J. Lin. A study on sigmoid kernels for SVM and the trainingafi-PSD kernels
by SMO-type methods. Technical report, National Taiwan University,cl2003.

D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similaritylsssar&cience 227
(4693):1435-1441, March 1985.

D. G. Lowe. Distinctive image features from scale-invariant keypoints.J. Computer Vision60
(2):91-110, 2004.

R. Luss and A. d’Aspremont. Support vector machine classification witéfimte kernels. In
Advances in Neural Information Processing Systet087.

C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-peskarnels. InProc. Intl.
Conf. Machine Learning2004.

E. Pekalska and R. P. W. Duin. Dissimilarity representations allow for buildoag classifiers.
Pattern Recognition Letter23(8):943-956, June 2002.

E. Pekalska, P. Pdkl and R. P. W. Duin. A generalized kernel approach to dissimilarity¢base
classification.J. Machine Learning Research:175-211, Dec. 2001.

S. Philips, J. Pitton, and L. Atlas. Perceptual feature identification foreastinar echoes. Rroc.
IEEE OCEANS Conf2006.

J. C. Platt. Using analytic QP and sparseness to speed training of supptot machines. In
Advances in Neural Information Processing SysterfS8.

R. M. Rifkin. Everything Old is New Again: A Fresh Look at Historical Approaches in hitze
Learning PhD thesis, MIT, 2002.

V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann. Optimal clustereprieg embedding of
nonmetric proximity data.l[EEE Trans. Pattern Anal. and Machine InteR5(12):1540-1551,
Dec. 2003.

775



CHEN, GARCIA, GUPTA, RAHIMI AND CAZZANTI

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distancenatriz for image retrieval.
Intl. J. Computer Vision40(2):99-121, Nov. 2000.

S. Santini and R. Jain. Similarity measuréSEE Trans. Pattern Anal. and Machine Inte21(9):
871-883, Sept. 1999.

B. Scholkopf and A. J. SmolaLearning with Kernels: Support Vector Machines, Regularization,
Optimization, and BeyondMIT Press, Cambridge, MA, 2002.

T. F. Smith and M. S. Waterman. Identification of common molecular subsegsiehdolecular
Biology, 147(1):195-197, March 1981.

C. Stanfill and D. Waltz. Toward memory-based reason@gnm. ACM29(12):1213-1228, Dec.
1986.

R. Tibshirani. Regression shrinkage and selection via the las$oyal Statistical Society, Series
B (Statistical Methodologyp8(1):267—288, 1996.

A. Tversky. Features of similarity?sychological Reviey84(2):327-352, July 1977.

A. Tversky and I. Gati. Similarity, separability, and the triangle inequaktgychological Review
89(2):123-154, March 1982.

L. Wang, C. Yang, and J. Feng. On learning with dissimilarity functions.Pioc. Intl. Conf.
Machine Learning2007.

G. Wu, E. Y. Chang, and Z. Zhang. An analysis of transformation onpusitive semidefinite
similarity matrix for kernel machines. Technical report, University of Catifa, Santa Barbara,
March 2005.

H. Zhang, A. C. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminativearest neighbor clas-
sification for visual category recognition. Rroc. IEEE Computer Soc. Conf. Computer Vision
and Pattern Recognitiqr2006.

X. Zhu. Semi-supervised Learning with Grapt®hD thesis, School of Computer Science, Carnegie
Mellon University, 2005.

H. Zou and T. Hastie. Regularization and variable selection via the elastid.rneayal Statistical
Society: Series B (Statistical Methodolog§7 (2):301-320, April 2005.

776



