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Abstract—We investigate three extensions to the generative
similarity-based classifier called local similarity discriminant
analysis (local SDA): a Bayesian approach to estimating the
pmfs based on the assumption that similarities are multinomially
distributed and on the Dirichlet prior distribution; a pairwise-
similarity formulation of local SDA that accounts for all local
pairwise similarities to estimate the pmfs; a combined Bayesian
pairwise-similarity approach. We discuss how the proposed
extensions afford more modeling flexibility than standard local
SDA and less cumbersome model training than previously-
published local SDA regularization strategies. Experiments with
five benchmark similarity-based classification datasets show that
the increased modeling flexibility and lighter computational
burden of the proposed extensions are coupled with the good clas-
sification performance of the local SDA classification paradigm.

Index Terms—similarity-based classification; discriminant
analysis; Bayesian; prototype; Dirichlet distribution;

I. SIMILARITY-BASED CLASSIFICATION

Similarity-based classifiers learn from a set of pairwise
training similarities, training class labels, and from the sim-
ilarities between a test sample and the training samples [1].
Similarity-based classifiers are independent of a chosen sim-
ilarity measure, which is usually problem-dependent and can
subsume complex relationships between complex, heteroge-
neous samples. In this paper, we focus on the problem of
designing generative classifiers for similarity-based learning.
Here, the goal is to create class-conditional probabilistic
models of the given similarities. Generative similarity-based
classifiers differ from the standard metric-based generative
classifiers, such as quadratic discriminant analysis and Gaus-
sian mixture models, because the modeled quantity is the
pairwise similarity between the samples rather than the numer-
ical feature vectors that describe the samples. Producing class
probabilities is important in many practical systems where
there may be skewed class priors or asymmetric misclassifi-
cation costs, or where probabilities are required as an input to
the next component in the system or to fuse with probabilistic
information about the class label derived from other sources.

Recently, an effective generative classifier for similarity-
based learning called similarity discriminant analysis (SDA)
was proposed [2], followed by a local version (local SDA)
[3], and a regularized local version [4]. We review the standard
local SDA classifier in Section II, and discuss its limitations.

In Section III, we introduce the first contribution of this
paper: a Bayesian framework for estimating the local SDA
class-conditional pmfs based on a the assumption that the
similarities are multinomially distributed and on a Dirichlet-
distributed prior. In Section IV we introduce the second con-
tribution of this paper: a pairwise local SDA classifier which
endows local SDA with increased flexibility and robustness.
We also discuss a combined pairwise, Bayesian approach to
modeling the similarities. Experiments in Section V show
that the proposed, more flexible approaches do not impair
the local SDA performance, often produce better results, and
are competitive with other state-of-the-art similarity-based
classifiers.

There has been other research into generative classifiers for
similarity-based learning that treats the n-vector of similarities
between any sample and the n training samples as a feature
vector, and then applies standard generative classifiers to that
feature space. These classifiers, such as regularized linear or
quadratic discriminant analysis [5], [6] have the drawback that
their generative models grows as O(n) and O(n2), and are
arguably difficult to interpret.

Other related research considers generative models for ran-
dom graphs or networks [7]. They model the a graph as being
drawn from an exponential distribution, and theoretically we
believe this model could be applied for cases of similarity-
based learning where similarities only take on binary values,
but no such experiments have been done. For the general
case of similarity-based learning, how to adapt this type of
generative model is an open question.

Besides generative classifiers, there are three major ap-
proaches to similarity-based classification: nearest neighbor
methods, treating similarities as features, and treating similar-
ities as kernels; for a more thorough review of these methods
see [1]. Treating similarities as features means using the
similarities to the n training samples (or some subset thereof)
as a feature vector, and then classifying with any standard
metric learning algorithm, as done in the related generative
classifier work noted above. In our experiments, we represent
this approach with a local support vector machine (SVM)
applied with a linear kernel to the similarities-as-features
[8]. Treating similarities as kernels entails approximating the
similarity training matrix S by a symmetric positive definite



matrix which can be used as a kernel in a SVM. Three
popular ways to approximate the similarity matrix are to set
any negative eigenvalues to zero (clip), to flip any negative
eigenvalues so they become positive (flip), and to add the
identity matrix scaled by the minimum (negative) eigenvalue to
the original similarity matrix (shift) [9]. Clipping the spectrum
produces the nearest positive semidefinite matrix in terms of
the Frobenius norm. As argued in [1], flipping the eigenvalues
has a similar effect as using SST as a kernel, and thus
behaves similarly to using the similarities-as-features. Shifting
the spectrum has the property that only the self-similarities are
changed [10]. Finally, local discriminative classifiers (SVM-
KNN) produce local SVMs from the k-nearest (most similar)
neighbors of a test sample [11]. Any of the eignevalue manipu-
lation techinques can be applied to the local pairwise similarity
matrices to produce local kernels.

II. REVIEW OF LOCAL SDA

In this section we review the standard local SDA classifier,
discuss its limitations and previous regularization strategies,
and motivate the contributions of this paper.

Assume that the test and training samples belong to an
abstract space of possible samples B. Let X ∈ B be a random
test sample with random class label Y ∈ {1, 2, . . . , G}, and let
x ∈ B denote the realization of X . Also assume that one can
evaluate a relevant similarity function s : B × B → Ω, where
Ω ⊂ R is assumed to be a finite discrete space without loss
of generality, and r = |Ω|. Let X ⊂ B be the set of n training
samples, and N (x) ⊂ X be the neighborhood of a test sample
x, defined as its k-nearest (most similar) training samples.
Also, let Ng(x) ⊂ N (x) be the subset of x’s neighbors that
belong to class g.

The local SDA classifier follows from the standard Bayes
classifier by making the fundamental assumption that all the
information about x’s class label depends only on a set of local
similarity statistics, T (x) = {T1(x), T2(x), . . . TM (x)}. The
classification rule for local SDA is is to classify a test sample
x as the class ŷ that minimizes the expected misclassification
costs

arg min
f=1,...,G

G∑
g=1

C(f, g)P (T (x)|Y = g)P (g), (1)

where C(f, g) is the cost of classifying as class f when the
true class is g, P (x|Y = g) is modeled as P (T (x)|Y = g),
and P (g) is the a priori probability of class g.

Many choices are possible for T (x) [12], but of the
choices we had previously considered, the best performing was
s(x, µh(x)), the similarity between the sample x and its local
class centroid µh(x) [3], where µh(x) ∈ Nh(x) is the local
training sample from class h with maximum sum-similarity to
all other training samples from its same class,

µh(x) = arg max
v∈Nh(x)

∑
a∈Nh(x)

s(a, v).

.

Given these similarities to centroids as the set of similarity
statistics T (x) = {s(x, µh)}1,where h = 1 . . . G, the standard
local SDA classifier models the probability of the similarity
of x to the centroid µh as a discrete exponential marginal
pmfs, conditioned on x being from class g. The joint class-
conditional pmfs is the product of the marginals:

P (T (x)|Y = g) =
G∏
h=1

P (s(x, µh)|Y = g)

=
G∏
h=1

γghe
λghs(x,µh).

The parameters {λgh} are determined by numerical min-
imization under the method-of-moments constraint that the
expected value of the similarity be equal to the observed
average similarity,

EP (s(x,µh)|Y=g)[s(X,µh)] =

∑
z∈Ng(x) s(z, µh)

kg
, (2)

where kg = |Ng(x)| and the normalization parameters {γgh}
guarantee that the class-conditional models are in fact pmfs.
Thus, the standard formulation of the local SDA classifier is:

arg min
f=1,...,G

G∑
g=1

C(f, g)

(
G∏
h=1

γghe
λghs(x,µh)

)
P (g).

This exponential SDA model admits two interpretations:
a) it is the maximum likelihood exponential model with
independent marginals, and b) it is the maximum entropy
distribution that satisfies the set of mean constraints given by
(2). The local SDA classifier possesses both the interpretability
of generative models and the low bias of local classifiers,
and has been shown to be competitive with state-of-the-art
similarity-based classifiers [1].

The standard local SDA classifier is also consistent, in the
sense that its classification error converges to the Bayes error
[3], but the convergence may be hindered when degenerate
local pmfs arise. Such is the case when the local mean
constraint takes the form

EP (s(x,µh)|Y=g)[s(X,µh)] = c, c ∈ {inf(Ω), sup(Ω)},

which can occur for example with small neighborhood sizes.
When the mean constraints takes on an extremal value, it can
only be satisfied by a Kronecker delta pmf: P (s(X,µh)|Y =
g) = δ(s(x, µh)−c), which gives rise to the degenerate class-
conditional joint

∏
h P (s(X,µh)|Y = g) ≡ 0, and causes

classification errors.
Previous work addressed this risk of degeneracy by either

reverting to a local centroid classifier when degeneracy was
detected [3], or by regularization of the estimated class-
conditional pmfs [4]. Of a number of regularization approaches
considered, the theoretical and empirical evidence favored
regularizing the pmfs by forming a convex combination of the

1We drop the cumbersome notation µh(x) from the rest of the paper in
favor of µh, but note that the class centroids are determined from N (x), and
thus depend on the sample x.



local estimated SDA pmf with the average of the estimated
local pmfs from the training samples:

P̂ (s(x, µh)|Y = g)
= (1− ζ)P (s(x, µh)|Y = g) + ζPave(sh|g),

where Pave(sh|g) denotes the average of n marginal class-
conditional local pmfs computed from the training set and
the regularization parameter ζ ∈ [0, 1]. Analogously, one
could regularize the joint class-conditional pmfs with the quan-
tity

∏G
h=1 Pave(sh|g). Both regularization methods produce

smoother, non-exponential estimates of the local pmfs, thus
enlarging the set of allowable class-conditional pmf models
beyond the discrete exponential functions.

The first contribution of this paper is a Bayesian approach
to estimating the local class-conditional pmfs based on a
mutinomial model of the similarity distribution and a Dirichlet
prior. Instead of regularizing the pmfs by convex combination,
the Bayesian approach estimates the local similarity pmf as
an expected posterior distribution, which has a closed-form
solution.

The second contribution of this paper formulates the local
SDA classifier in terms of the given pairwise similarities
between the test sample x and all of its neighbors, rather than
in terms of local centroids statistic.

A third constribution of this paper is a combined pairwise
Bayesian local SDA classifier, which combined the Bayesian
and pairwise similarity approaches. In the next sections, we
discuss these contributions in detail.

III. BAYESIAN LOCAL SDA

Here we detail how to implement SDA using a Dirichlet
prior for the local pmf’s, rather than assuming an exponential
model.

A. The Bayesian Setup

For notational convenience, denote the local SDA pmf of
interest as θgh, which is a pmf over the domain of similarities
Ω such that θgh ∈ [0, 1]r where r = |Ω|, and

∑r
j=1 θgh[j] = 1.

Let Θgh be a random pmf whose support is the r-dimensional
probability simplex, and which has realization θgh.

The Bayesian approach is to estimate the local SDA pmf
θ̂gh as the expected pmf

θ̂gh = EΘgh
[Θgh],

where the expectation of Θgh is taken with respect to its
posterior probability distribution. By Bayes’ rule, the posterior
can be decomposed into the product of the likelihood and the
prior divided by the probability of the data:

p(θgh|Dgh) = p(Dgh|θgh)p(θgh)/p(Dgh), (3)

where p(θgh) is the prior probability of the pmf θgh and
p(Dgh|θgh) is the likelihood of the observed data under the
assumption that the similarities are distributed according to
θgh. In the standard local SDA model, the data over which
the likelihood is evaluated are defined as the set of similarities

between the neighbors of test point x from class g and the
class h centroid µh: Dgh = {s(zi, µh)|zi ∈ Ng(x)}. The
term p(Dgh) is the prior probability of the data, a normalizing
factor. Then, the expected pmf is:

θ̂gh = EΘgh
[Θgh]

=
∫
θgh

θghp(Dgh|θgh)p(θgh)/p(Dgh)dθgh. (4)

To evaluate (4) with a closed-form solution, one would like
the prior p(θgh) to be a conjugate prior to the likelihood.
For the standard local SDA discrete exponential model, the
likelihood is a product of discrete exponentials functions over
the finite, countable set Ω, and the exponent λgh ∈ R: for this
atypical exponential function no conjugate prior is known. To
overcome this difficulty, one could give up the convenience
of a closed-form solution and numerically evaluate (4) after
choosing an appropriate, known pmf as the prior – for example
based on expert knowledge of the pairwise similarities.

Numerically evaluating (4) has several drawbacks, first and
foremost the need for numerical evaluation – for example by
Monte Carlo methods – which is time consuming. Also, the
lack of a closed-form solution makes it difficult to characterize
the properties of the expected pmf, and more generally hinders
the conceptual comparison to other classifiers.

Here we propose the simpler approach of expanding the
family of allowable local similarity pmfs beyond discrete
exponentials to be the entire family of multinomial distri-
butions. The defining assumption of the proposed Bayesian
local SDA approach is that the local similarities being modeled
are multinomially distributed. For the multinomial distribution,
the conjugate prior is the Dirichlet distribution [13], and the
expected pmf (4) has an intuitive, closed-form solution: it is
the expected value of a Dirichlet-distribution posterior.

B. The Dirichlet-Multinomial Similarity Model
Given a sample z assumed to be from class g and a

neighborhood N (z), assume that its similarity to the local
centroid µh ∈ Nh(z) is distributed according to the pmf θgh.
Suppose there are kg = |Ng| such observations from the
same neighborhood, and let the vector m be the histogram
of occurrences of the jth similarity value ωj ∈ Ω. That is,
m[j] =

∑kg

i=1 δ(s(zi, µh) − ωj), for zi ∈ Ng , where δ is
the Kronecker delta function. Assuming these locally observed
similarity values are independently drawn, the likelihood of a
particular histogram m is

p(m) ∼ Mult(θgh) = kg!
r∏
j=1

1
m[j]!

(θgh[j])m[j]
.

Following the Bayesian framework, we assume that θgh
is a realization of a random pmf Θgh, which we assume is
distributed as the Dirichlet distribution (which is a conjugate
prior of the multinomial distribution):

p(θgh) ∼ Dir(αgh),

where the Dirichlet vector parameter αgh ∈ Rr+ is the un-
normalized mean pmf such that: E[θgh] = αgh/

∑r
j=1 αgh[j].



For the multinomial-Dirichlet conjugate pair, the posterior is
the Dirichlet distribution

p(θgh|m) ∼ Dir(αgh +m).

Then, the expected posterior pmf θ̂gh in (4) is simply the
expected value of the posterior Dirichlet distribution,

θ̂gh =
αgh +m∑r

j=1 αgh[j] +m[j]
. (5)

The resulting Bayesian local SDA classifier classifies a test
sample x as the class ŷ that solves

arg min
f=1,...,G

G∑
g=1

C(f, g)

(
G∏
h=1

αgh +m∑r
j=1 αgh[j] +m[j]

)
P (g).

(6)
We estimate each Dirichlet prior parameter {αgh} by max-

imizing the likelihood (ML) of the observed histograms of
local similarities, Dgh = {mi}, i = 1, . . . n,

α∗gh = arg max
αgh

p(Dgh|αgh).

To estimate α∗gh, in this work we adopt the iterative numer-
ical procedure described by Minka, which is based on the
observation that the likelihood is distributed according to a
multivariate Polya distribution [14].

Expression (5) provides an intuitive interpretation for the
estimated marginal pmfs. For a given test point x assumed
from class g, the probability of observing the similarity
s(x, µh) = ωj to the centroid of class h is given by the a priori
mean probability αgh[j] updated with the histogram m[j] of
the occurrences of ωj in x’s local neighborhood N (x).

IV. PAIRWISE LOCAL SDA

In this section we propose a variant of local SDA that mod-
els the probability of seeing all the given pairwise similarities
in the neighborhood of the test sample, rather than only the
similarities to the local centroids.

Given a test sample x assumed from class g and its k-
sized neighborhood N (x), let its local similarity statistics be
T (x) = {s(x, z)|z ∈ N (x)}, the set of the similarities be-
tween x and all its neighbors, and let the set of the similarities
between x and its neighbors only from class h be denoted by
Th(x) = {s(x, z)|z ∈ Nh(x)}, so that T (x) =

⋃
h Th(x). The

defining property of pairwise local SDA is that the marginal
probability of x is defined as the average of the estimated
probabilities of the similarities of x to its neighbors from class
h

Ph(Th(x)|Y = g)
4
=

1
kh

∑
z∈Nh(x)

P̂ (s(x, z)|Y = g)

=
1
kh

∑
z∈Nh(x)

γghe
λghs(x,z). (7)

The parameters {λgh} are found by numerical optimization
under the method-of-moment constraint that reflects the contri-
bution of all the pairwise similarities between the neighbors of
x: the expected similarity of a random sample to its neighbors

from class h must be equal to the empirical average of the
local similarities,

EPh(Th(x)|Y=g)[s(X, z)] =

∑
zi∈Ng(x)

∑
zj∈Nh(x) s(zi, zj)

kgkh
.

(8)
Then the class-conditional pmfs are modeled as the product of
the marginal class-conditional pmfs (making an independence
assumption),

P (T (x)|Y = g) =
G∏
h=1

Ph(Th(x)|Y = g), (9)

and the test sample x is classified according to (1).
In the experiments we also consider the pairwise local SDA

classifier where the marginal pmfs are estimated using the
Bayesian approach described in Section III. For this com-
bined pairwise Bayesian local SDA classifier, the local SDA
models are estimated using the Dirichlet-multinomial Bayesian
formulation based on all the pairwise local similarities. The
classification rule is identical to (6), but the histogram m
is the count of all pariwise similarities, that is m[j] =∑kg

i=1

∑kh

l=1 δ(s(zi, zl) = ωj) for zi ∈ Ng(x), zl ∈ Nh(x).

V. EXPERIMENTS

We present results for the proposed Bayesian local SDA and
pairwise local SDA, and for the combined pairwise Bayesian
local SDA classifier. We compare the proposed classifiers to
the standard and regularized local SDA classifiers, and to the
standard k-nearest neighbor classifier (in similarity space), and
four state-of-the-art local SVM classifiers.

A. Data and Setup

We show results on experiments for five different similarity-
based datasets from a variety of fields. These datasets and the
classification software are available on the Web. 2

The Amazon problem is to classify books as fiction or
non-fiction, where the similarity between two books is the
symmetrized percentage of customers who bought the first
book after viewing the second book. There are 96 samples
in this dataset, 36 from class non-fiction, and 60 from class
fiction. This similarity function strongly violates the triangle
inequality. This dataset is also especially interesting because
this similarity strongly violates the minimality property of
metrics that says a sample should be maximally similar to
itself, because customers often buy a different book if they
first view a poorly-reviewed book. The negative eigenfraction
(sum of the magnitudes of the negative eigenvalues divided by
the sum of all magnitudes) for the Amazon pairwise similarity
matrix is 0.6%.

The Aural Sonar problem is to distinguish 50 target sonar
signals from 50 clutter sonar signals. Listeners perceptually
evaluated the similarity between two sonar signals on a scale
from 1 to 5. The pairwise similarities are the sum of the evalu-
ations from two independent listeners, resulting in a perceptual

2http://staff.washington.edu/lucagc and
http://idl.ee.washington.edu/similaritylearning



similarity from 2 to 10 [15]. This dataset is interesting because
perceptual similarities are often non-metric, in that they do not
satisfy the triangle inequality. The negative eigenfraction for
Aural Sonar is 21%.

The Patrol problem is to classify 241 people into one of 8
patrol units based on who people claimed was in their unit
when asked to name five people in their unit [16]. The self-
similarity is set to 1. Like the Amazon dataset, this is a sparse
dataset and most of the similarities equal to zero, with a large
40% negative eigenfraction.

The Protein problem is to classify 213 proteins into one of
four protein classes based on a sequence-alignment similarity
[17]. This problem is very well-suited to treating similarities
as features because many of the first class proteins are consis-
tently more similar to proteins from the second class [1]. The
negative eigenfraction for Protein is 20%.

The Voting problem is to classify 435 representatives into
two political parties based on their votes [18]. The categorical
feature vector of yes/no/abstain votes was converted into
pairwise similarities using the value difference metric, which
is a (dis)similarity designed to be useful for classification
[19]. The voting similarity is almost metric, with a very small
eigenfraction of 0.06%.

The five datasets were partitioned 20 times into disjoint
benchmark partitions of 80% training samples and 20% test
samples. For each of the 20 partitions of each dataset we
chose parameters using ten-fold cross-validation for each of
the classifiers shown in the tables. Cross-validation parameter
sets were based on recommendations in previously published
papers and popular usage. For all local classifiers, the choice of
neighborhood sizes was k ∈ {2, 4, 8, 16, 32, 64,min(n, 128)}
and voting ties are decided according to the prior for KNN.
For regularized local SDA, the choices for the convex regu-
larizing parameter were ζ ∈ {10−6, 10−3, 0.01, 0.1, 0.5, 0.9}.
For all SVMs, the standard C parameter choices were
10−3, 10−2, . . . , 105. Both ζ and C are cross-validated in
nested loops with k. Multi-class implementations of the SVM
classifiers used

(
n
2

)
pairwise classifiers.

B. Classification Results

Results are shown in Table I and Table II, averaged over the
20 randomized partitions. For each dataset, the best classifier
and the classifiers not statistically significantly worse are in
bold, where the significance was evaluated with the one-sided
Wilcoxon signed rank test (p = 0.05).

Table I compares the proposed local SDA extensions to
previously-published local SDA variants, and Table II shows
the performance of the combined pairwise Bayesian local SDA
compared to state-of-the-art variants of local SVM similarity
classifiers based on KNN-SVM [1]. The most interesting result
is that modeling the local pairwise similarities rather than
the local centroid similarities results in a dramatic decrease
in error for the Protein dataset from 19.42% to 9.77%.
Combining the pairwise model with the Bayesian estimation
further reduces the error to 1.63% on the Protein dataset -
which is statistically tied with the best local SVM variant,

as shown in Table II. Apart from the excellent performance
on the Protein dataset, the pairwise Bayesian local SDA is
statistically tied with the other local SDA variants.

Combined with the standard local centroid model, the
Bayesian local SDA (top row of Table I) is not seen to provide
a statistically significant improvement over local SDA. We
believe this dependence on the type of similarity statistic being
modeled emerges because the similarity to local centroids
is more likely to be monotonic over the similarity domain
Ω. The exponential model of local SDA better captures
monotonic probability, whereas the multinomial model used
in the Bayesian approach is too flexible, and thus induces
too much estimation variance. In contrast, when modeling
pairwise similarities, the true probability distributions of the
similarities are more diverse, and are more likely to be
unimodal than monotonic, and thus the multinomial model’s
flexibility becomes an advantage.

VI. DISCUSSION AND HYPOTHESES

We proposed a Bayesian model for estimating class-
conditional distributions of similarities to reduce the chance
of model degeneracy, and proposed modeling local pairwise
similarities to reduce the variance due to the randomness
of the local centroid. The experimental evidence shows that
the resulting increased flexibility in the local SDA classifier
makes it much more competitive with state-of-the-art local
SVM methods for similarity-based learning, but with the added
advantage of being a generative classifier, and thus providing
natively probabilistic outputs and greater interpetability.

We hypothesize that even better results are possible with
generative similarity-based classifiers. The SVM approaches
require forming a PSD kernel from the similarities, and
although in some cases that may provide useful regularization,
in other cases that may cause the loss of useful information
for the learning problem. The SDA approach models the
similarities directly and does not require such restrictions or
approximations, and thus for very indefinite similarities may
have a performance advantage over kernel-based approaches.

The computational load for all SDA-type of classifiers is
comparable. Just like local SDA, all other variants require
estimating G2 local pmfs for each test sample, which we
accomplish quickly using standard function minimization and
maximum likelihood methods. The Bayesian, pairwise, and
regularized local SDA classifiers additionally require iterat-
ing through the entire training set to form n sets of local
pmfs needed to estimate the Dirichlet model parameters and
the regularizing pmfs, respectively, for each cross-validated
neighborhood size. For large datasets, this procedure can be
time-consuming, but it need be done only once, thus does not
preclude using the proposed methods for real-time similarity-
based applications. More discussion on computational issues
was previously published [4].

We adopted the multinomial-Dirichlet conjugate pair for
Bayesian local SDA. Other choices for the similarity pmfs
and the prior can be considered, with the goal of simplifying
the model parameter estimation for the posteriors. However,



TABLE I
AVERAGE (STANDARD DEVIATION) OF THE PERCENT TEST ERROR OVER 20 RANDOM TEST/TRAIN SPLITS FOR THE SDA-TYPE CLASSIFIERS. FOR EACH

DATASET, THE BEST CLASSIFIER AND THE CLASSIFIERS NOT STATISTICALLY SIGNIFICANTLY WORSE ARE IN BOLD.

Amazon Aural Sonar Patrol Protein Voting
(2 classes) (2 classes) (8 classes) ( 4 classes) (2 classes)

Bayesian local SDA 10.79 (8.79) 19.75 (8.50) 11.56 (4.71) 22.91 (4.85) 6.84 (1.95)
pairwise local SDA 12.37 (9.40) 16.25 (8.09) 11.56 (4.71) 9.77 (5.97) 7.07 (2.51)
pairwise Bayesian local SDA 11.58 (8.64) 16.25 (8.25) 11.56 (4.71) 1.63 (2.73) 6.90 (2.01)
Local SDA 12.37 (9.40) 18.75 (7.05) 11.56 (4.71) 19.42 (6.84) 6.90 (2.33)
Regularized local SDA (marginal) 12.11 (9.52) 18.75 (8.25) 11.56 (4.71) 20.00 (7.64) 6.72 (2.25)
Regularized local SDA (joint) 11.58 (9.60) 19.25 (8.47) 11.56 (4.71) 19.65 (7.06) 6.78 (2.33)

TABLE II
AVERAGE (STANDARD DEVIATION) OF THE PERCENT TEST ERROR OVER 20 RANDOM TEST/TRAIN SPLITS, FOR THE PAIRWISE BAYESIAN LOCAL SDA

CLASSIFIER AND FIVE OTHER CLASSIFIERS. FOR EACH DATASET, THE BEST CLASSIFIER AND THE CLASSIFIERS NOT STATISTICALLY SIGNIFICANTLY
WORSE ARE IN BOLD.

Amazon Aural Sonar Patrol Protein Voting
(2 classes) (2 classes) (8 classes) ( 4 classes) (2 classes)

pairwise Bayesian local SDA 11.58 (8.64) 16.25 (8.25) 11.56 (4.71) 1.63 (2.73) 6.90 (2.01)
KNN (on similarities) 12.11 (9.21) 15.75 (5.68) 19.48 (5.20) 30.00 (9.63) 5.69 (1.95)
KNN-SVM (clip) 7.37 (6.48) 13.75 (7.59) 13.75 (5.17) 11.86 (5.64) 5.11 (2.40)
KNN-SVM (flip) 7.63 (6.27) 14.00 (5.98) 13.02 (4.96) 1.74 (2.49) 5.11 (2.37)
KNN-SVM (shift) 7.63 (6.27) 14.00 (7.00) 13.33 (5.03) 30.23 (8.80) 5.23 (2.43)
KNN-SVM (sims-as-features) 13.68 (8.08) 13.00 (6.16) 14.58 (5.53) 29.65 (10.18) 5.40 (1.40)

the potential benefit of simpler computations must be con-
sidered jointly with the interpretability and relevance of the
chosen models to the similarity-based classification problem.
For instance, a negative Dirichlet prior [20] would eliminate
the need for ML estimation of αgh, but would be difficult
to interpret and could introduce too much model bias by
enforcing unrealistic sparseness in the estimated pmfs. On
the contrary, in practice, similarity pmfs are often smooth.
Research into suitable models for Bayesian SDA is ongoing.

Future extensions might incorporate smoothness and mono-
tonicity constraints into the multinomial-Dirichlet model. The
multinomial distribution is particularly well-suited for categor-
ical random variables, for which the pmfs can be multimodal.
However, similarities are ordinal, and the similarity pmf is
generally monotonic. Lastly, we hypothesize that adopting
the pairwise similarity approach rather than the single class
centroid approach will provide the most flexibility while
retaining good performance.
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