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Abstract— A generative model for similarity-based classifica-
tion is proposed using maximum entropy estimation. First, a
descriptive set of similarity statistics is assumed to be sufficient
for classification. Then the class conditional distributions of these
descriptive statistics are estimated as the maximum entropy dis-
tributions subject to empirical moment constraints. The resulting
exponential class conditional distributions are used in a maximum
a posteriori decision rule, forming the similarity discriminant
analysis (SDA) classifier. The relationship between SDA and
the quadratic discriminant analysis classifier is discussed. An
example SDA classifier is given that uses the class centroids as the
descriptive statistics. Compared to the nearest-centroid classifier,
which is also based only on the class centroids, simulation and ex-
perimental results show SDA consistently improves performance.

I. SIMILARITY-BASED CLASSIFICATION

In similarity-based classification, the problem is to classify
a test sample x given only the pairwise similarities between x
and a set of training samples {xi}, i = 1, . . . , n, and given the
pairwise similarity between any two of the training samples
[1]–[4]. The training samples’ class labels are given, and are
denoted {yi}. A similarity function s is a mapping that accepts
two samples x, z from some sample space x, z ∈ B, and
returns a real number. That is, s : B ×B → Ω, where Ω ⊂ R.
It is useful to think of the sample space B as an abstract
space, such as “the space of all proteins,” or “the space of all
blogs.” The similarity s(x, z) is some judgement of how near
samples x and z are, but similarities are not required to satisfy
metric properties or any specific mathematical properties. The
term “similarity-based classification” is also used when the
given information is “dissimilarities,” where a dissimilarity is
a judgement of how far two samples are, but is not required
to satisfy any specific mathematical properties.

Similarity-based learning is a flexible learning paradigm.
Similarity-based learning is a useful approach when samples
are described by categorical variables. For example, DNA
is described as a sequence of unordered bases, A, T, G,
and G. Similarity-based learning is of course appropriate
when the similarity or dissimilarity between samples is not
a metric. For example, driving-times between any two given
locations is not a metric, as it is often not symmetric and can
violate the triangle inequality. Categorical variables and non-
metric similarities/disssimilarities are common in fields such

as bioinformatics, information retrieval, and natural language
processing [1], [4]. Also, similarity-based learning may be a
better model than standard Euclidean-space learning for how
humans classify, as psychologists have shown that metrics do
not account for human judgements of similarity in complex
situations [5]–[7]. Laub et al. have shown that nonmetric
similarities lead to information that can be useful for pattern
recognition [8].

The simplest method for similarity-based classification is
the nearest neighbor classifier, which determines the most
similar training sample to the test sample, and classifies the
test sample as its most-similar neighbor’s class. In fact, nearest
neighbor classifiers using a tangent distortion [9] and a shape
similarity metric [10] have both been shown to achieve very
low error on the MNIST character recognition task.

Similarity-based classifiers that model a generating distribu-
tion have not been previously proposed. A simple model-based
approach is the nearest centroid classifier [11]. The nearest-
centroid classifier finds a centroid µh for the hth class:

µh = arg max
µ∈Xh

∑

z∈Xh

s(z, µ), (1)

where Xh is the set of training samples from class h. Then, a
test sample x is classified as the class ŷ, where

ŷ = arg max
h

s(x, µh) (2)

The nearest-centroid classifier is analogous to the nearest-
mean classifier if samples are described as Euclidean feature
vectors, and each class is characterized by its mean Euclidean
feature vector.

In this paper, we propose a generative model for similarity-
based classification, which we term similarity discriminant
analysis (SDA). Although the generative architecture is quite
general, we consider in more depth SDA using class centroids,
and show that compared to the nearest-centroid model classi-
fier and to nearest-neighbor classification, the log-linear SDA
classifier can achieve better results in simulation and on real
data.



II. GENERATIVE ARCHITECTURE FOR SIMILARITY-BASED
CLASSIFICATION

Let a test sample x be a realization of the random variable
X ∈ B, where B is the sample space. Let the similarity
function be some function s : B × B → Ω, where Ω ⊂ R.
In this paper, we assume that the sample space B is finite
and discrete, such that the space of the possible pairwise
similarities Ω is also finite and discrete. Let Y ∈ G be the
class label associated with x, where G is a finite set of classes.
Let C(g, h) be the cost of classifying x as class g if the true
class is h.

An optimal classifier is the theoretical Bayes classifier [12],
which assigns a test sample x the class ŷ that minimizes the
expected misclassification cost,

ŷ = arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|x), (3)

where C(f, g) is the cost of classifying the test sample x as
class f if the true class is g. In practice the distribution P (g|x)
is generally unknown.

For the generative model, assume that the relevant informa-
tion about X’s class label is captured by some finite set T (X)
descriptive statistics. For example,

T (X) = {s(X, µ1), s(X,µ2), . . . , s(X, µG)}. (4)

Under this assumption the classification rule (3) for a particular
test sample x is to classify x as class the ŷ that solves

arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|T (x))

Using Bayes rule, this is equivalent to the problem

arg min
f=1,...,G

G∑
g=1

C(f, g)P (T (x)|Y = g)P (Y = g). (5)

Next, we assume that each unknown class conditional
distribution P (T (x)|Y = g) has the same average value as
the training sample data from class g. That is, we assume
that the mth descriptive statistic Tm(x) has mean equal to the
training sample mean:

EP (T (x)|g)[Tm(X)] =
1
ng

∑

z∈Xg

Tm(z), (6)

for g = 1, . . . , G and m = 1, . . . ,M . Given these M × G
constraints, there is some compact and convex feasible set of
G class conditional distributions P (T (x)|Y = g). A feasible
solution will always exist because the constraints are based on
the data.

As prescribed by Jaynes’ principle of maximum entropy
[13], we propose selecting the unique class conditional dis-
tributions that satisfy (6) and maximize entropy. Maximum
entropy distributions have the maximum possible uncertainty,
and in that sense are the least assumptive solution. Given
a set of moment constraints, the maximum entropy solution

is known to have exponential form. Selecting the maximum
entropy distribution subject to constraints is analogous to the
generative classifier quadratic discriminant analysis (QDA).
QDA models each class conditional distribution as a Gaussian
[12], which is the maximum entropy distribution if the dis-
tribution’s mean and covariance are constrained to match the
sample mean and covariance for each class.

For the gth class, solving the M constraints specified by (6)
for the maximum entropy distribution yields

P̂ (T (x)|g) =
M∏

m=1

γgmeλgmTm(x) (7)

=
M∏

m=1

P̂ (Tm(x)|g), (8)

where the parameters {λgm, γgm} have unique solutions which
satisfy the constraints defined by (6). The equality given in (8)
shows that under the maximum entropy assumption the statis-
tics comprising the set T (x) are conditionally independent
given the class label. Thus, one could equivalently describe this
model as the maximum entropy solution given the constraints

EP (Tm(x)|g)[Tm(X)] =
1
ng

∑

z∈Xg

Tm(z) (9)

for g = 1, . . . , G and m = 1, . . . , M , because the estimated
P (T (x)|Y = h) is the same.

Substituting the maximum entropy solution (7) into (5)
creates the SDA classification rule: classify x as the class ŷ
which solves

arg max
f=1,...,G

G∑
g=1

C(f, g)P (g)
M∏

m=1

γgmeλgmTm(x) . (10)

III. SDA BASED ON CLASS CENTROIDS

We further investigate the two-class SDA classifier using the
descriptive statistics given in (4) and zero-one misclassification
costs (that is, C(f, g) = 0 if f = g and C(f, g) = 1
otherwise). In this case, the SDA classification rule (10)
becomes: choose class 1 if

P̂ (s(x, µ1)|Y = 1)
P̂ (s(x, µ1)|Y = 2)

P̂ (s(x, µ2)|Y = 1)
P̂ (s(x, µ2)|Y = 2)

P (Y = 1)
P (Y = 2)

> 1.

(11)
Applying the maximum entropy solution for the class condi-
tional distributions, (11) becomes: choose class one if

γ11e
λ11s(x,µ1)

γ21eλ21s(x,µ1)

γ12e
λ12s(x,µ2)

γ22eλ22s(x,µ2)

P (Y = 1)
P (Y = 2)

> 1. (12)

This SDA classifier uses the same information about the test
sample as the nearest-centroid classifier, s(x, µ1) and s(x, µ2),
but models the probability distribution of these statistics under
the hypothesis that the sample belongs to class one or to class
two. The probability distributions of the similarities capture the
characteristic average deviation for each class and the average
cross-class deviations. It is helpful to group the terms in (11)
into the ratio term P̂ (s(x, µ1)|Y = 1)/P̂ (s(x, µ1)|Y = 2)



and the ratio term P̂ (s(x, µ2)|Y = 1)/P̂ (s(x, µ2)|Y = 2).
The first of these ratio terms establishes whether the similarity
between the test sample x and the class one centroid µ1

is better explained probabilistically by assuming x is from
class one or from class two. Likewise, the second ratio term
establishes whether the similarity s(x, µ2) is better explained
probabilistically by the hypothesis that x is from class one or
from class two.

The SDA classifier given in (12) uses the class centroids,
but is more flexible than the nearest centroid classifier. For
example, consider the case in which class one training samples
are tightly clustered around µ1, but class two training samples
have on average low similarity to µ2. Then even if a test
sample x is slightly more similar to µ1 such that s(x, µ1) >
s(x, µ2), SDA can learn that class one points should be
very similar to µ1, and can correctly classify x as a class
two sample. This is analogous to the action of quadratic
discriminant analysis in the case that class one’s variance is
very low compared to class two’s variance.

It is also helpful to consider the effect of the exponential
form of the class conditional distributions. Assume for this
analysis that the possible similarities are uniformly spaced
between 0 and 1. Then if the average empirical similarity be-
tween class one training samples and the class one centroid µ1

is greater than .5, the exponential distribution P̂ (s(x, µ1)|Y =
1) will necessarily be an increasing function of similarity.
Thus, high probability will be given to test samples that have
s(x, µ1) > .5. However, if the average empirical similarity
between class one training samples and the class one centroid
µ1 is less than .5, the exponential distribution P̂ (s(x, µ1)|Y =
1) will be a decreasing function, and low probability will be
given to test samples that have s(x, µ1) > .5. Thus, if class
one training samples are all relatively dissimilar to the class
one centroid, then a test sample that is too similar to the class
one centroid is assigned a low probability of being a class one
sample.

A simpler method to generalize the nearest centroid classi-
fier to take into account the different distributions of each class
would be to directly take into account the average similarity
s̄gg between class g training samples and a class g centroid
µg, where

s̄gg = (1/ng)
∑

xj∈Xg

s(xj , µg).

Then, classify a test sample x as class ŷ where

ŷ = arg max
g

s(x, µg)
s̄gg

. (13)

This is analogous to the Gaussian-derived rule of classifying
by the distances to the class means inversely weighted by
each class’s standard deviation: ‖x − µg‖/σg . We term the
classifier given in (13) the nearest centroid adjusted classifier,
and include it in our experiments detailed in the next section.

IV. EXPERIMENTS

Experiments were done to compare SDA using the cen-
troidal descriptive statistics given in (4) to nearest centroid,
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Fig. 1. Results for Perturbed Centroids Simulation.

nearest centroid adjusted (13), and nearest neighbors for
similarity-based classification.

A. Perturbed Centroids Simulation

We begin with a simple simulation where each class is gen-
erated by perturbing one centroidal sample; thus the nearest-
centroid classifiers are a good model for this simulation. There
are two classes, and each class is defined by one prototypical
set of n binary features, c1 or c2, where c1 and c2 are each
drawn uniformly and independently from {0, 1}n. A training
or test sample z drawn from class g has the ith feature
z[i] = cg[i] with probability 1 − pg , and z[i] 6= cg[i] with
perturbation probability pg . Each time the simulation is run,
the perturbation probabilities p1, p2 were drawn randomly
from a uniform distribution, p1 ∼ unif [0, 1

3 ], and p2 ∼
unif [0, 1/2]. The two classes are equally likely. There were
20 training samples, and 1000 test samples per run, and the
simulation was run 20 times.

For this simulation, we used the simple counting similarity.
That is, the similarity between x and z is the number of
features in which their feature value agrees. The results are
reported in Figure 1, and show that SDA performs consistently
better than the other classifiers.

B. Protein Data

Many bioinformatics prediction problems are formulated in
terms of pairwise (dis)similarities. An example is the protein
data set used in [4]. The dissimilarity values are calculated
using a sequence alignment program, which measures the
number of amino acids that differ between two sequences
[14]. Following [4], we used the 213 proteins that had the
class labels, “HA” (72 samples), “HB” (72 samples), “M” (39
samples) , and “G” (30 samples). Changing the similarity-
based classifiers described in this paper from similarities
to dissimilarities is straightforward: class centroids are cho-
sen to maximize sum-dissimilarity rather than to minimize



TABLE I
CLASSIFICATION RESULTS FOR FOUR PROTEIN PROBLEMS.

Classifier % Misclassified for Each Problem
HA HB M G

1 Nearest Neighbor 77% 51% 13% 13%
3 Nearest Neighbors 85% 55% 15 % 14%
5 Nearest Neighbors 81% 50% 16% 14%

Nearest Centroid 30% 42% 0% 12%
Nearest Centroid Adjusted 30% 25% 4% 22%

SDA 29% 29% 0% 1%

sum-similarity, the nearest-neighbor minimizes dissimilarity,
and the SDA model uses the descriptive statistics T (x) =
{d(x, µ1), d(x, µ2)}.

For SDA, the class priors were estimated to be the empirical
probability of seeing a sample from each class, with Laplace
correction. The set of possible dissimilarities Ω is needed to
solve for the SDA parameters λ and γ, but was not directly
available, so Ω was approximated as the set of empirical
similarities that occurred in the training samples’ similarity
matrix. The class centroids were as defined in (1).

Table I shows the percentage misclassification for the four
one-class-vs.-the-rest problems for each of the classifiers,
calculated as the leave-one-out error on the 213 samples
(the results were rounded for display). For this problem the
nearest centroid, nearest centroid adjusted, and SDA were
implemented as mixtures where each of the four classes was
represented by its own centroid (and in the case of SDA, its
own class conditional distribution). SDA performs better than
the nearest centroid model classifiers and nearest neighbor
classifiers. The relatively low error rates on class “M” and
class “G” suggest that those classes are well-modeled by
SDA’s centroidal model, but that classes “HA” and “HB” are
not.

V. RELATIONSHIP OF SDA TO OTHER CLASSIFIERS

A. Relationship of SDA to QDA

Quadratic discriminant analysis (QDA) is a generative clas-
sifier for standard metric-based learning (but not similarity-
based learning). QDA models each class by a Gaussian dis-
tribution, where the mean µ̂ ∈ Rd and covariance matrix Σ̂ ∈
Rd×Rd are estimated from the training samples for each class,
often using maximum likelihood. Then, a test point x ∈ Rd

is classified by determining which class conditional Gaussian
generating distribution is most likely to have generated the
test point. The Gaussian distribution is the maximum entropy
distribution given that the generating distribution is constrained
to have mean µ̂ and covariance matrix Σ̂.

If one considers z = T (x) to be a feature vector of the
test sample x, and zi = T (xi) to be a feature vector of the
ith training sample xi, then SDA is similar to QDA. In both
SDA and QDA, a class conditional distribution is estimated
to be the maximum entropy distribution given some empirical
moment constraints. And then a decision is made based on
the estimated class conditional likelihood of the feature vector

z = T (x) in the case of SDA, or the Euclidean test feature
vector in the case of QDA.

B. Relationship of SDA to Discriminant Analysis on Similarity
Features

Similarity-based classification problems can be turned into
standard Euclidean-based learning problems by taking the
n × 1 vector of similarities between a test sample and the n
training samples, and using it as an n-dimensional Euclidean
feature vector [2], [15], [16]. However, this approach turns the
similarity-based classification into a standard metric statistical
learning problem with n training samples in an n-dimensional
feature space, with the concomitant curse of dimensionality
difficulties [12]. Duin et al. propose dealing with the resulting
curse of dimensionality problem by using a regularized linear
discriminant analysis classifier on the n-dimensional feature
space [2], [16]. We refer to this method as discriminant
analysis on similarity features. Their results show that, on
average over their different experiments, linear classifiers built
on the similarity vectors achieve similar errors as the 1-nearest
neighbor similarity-based classifier, except in cases of severe
noise, where the 1-nearest neighbor has high error.

In this section, we further analyze discriminant analysis on
similarity features, and compare it with SDA. We formulate
the problem in terms of dissimilarities as done in [2], and for
simplicity consider only the two-class problem where, without
loss of generality, the classes are equally likely a priori. Let
D(x) be the n× 1 feature vector for a test point x, such that
the ith component of D(x) is d(x, xi), for i = 1, . . . , n and
where d is a dissimilarity function such that d : B × B → Ω,
Ω ⊂ R.

Discriminant analysis on similarity features classifies a test
sample based on the discriminant

f(D(x)) = D(x)T Σ−1(µ̃1−µ̃2)−.5(µ̃1+µ̃2)T Σ−1(µ̃1−µ̃2),
(14)

where the jth component of µ̃1 is
1
n1

∑

xi∈X1

d(xi, xj), (15)

µ̃2 is defined analogously, and Σ is the (unbiased) maximum
likelihood estimate of the within-class pooled covariance,
defined as:

Σ̂ =
1

(n− 2)

2∑
g=1

∑

xi∈Xg

(D(xi)− µ̃g)(D(xi)− µ̃g)
T (16)

If there are n training samples, then there are n×n parameters
to estimate for Σ̂, which is generally ill-posed. Duin et al.
suggest regularizing Σ̂ by forming a convex combination
between the empirical within-class pooled covariance and the
identity matrix. To simplify the present analytic comparison,
suppose that the true pooled covariance is the identity matrix
I , and optimistically suppose that the pooled covariance is
estimated perfectly, so that Σ̂ = I . Then the classification rule
becomes: classify as class one if f(D(x)) > 0, that is, if

D(x)T µ̃1 − 0.5µ̃T
1 µ̃1 > D(x)T µ̃2 − 0.5µ̃T

2 µ̃2. (17)



This decision rule is based on whether the feature vector of
dissimilarities D(x) is better correlated with µ̃1, the vector
of mean distances to each training sample from class one
training samples, or to µ̃2, the vector of mean distances to
each training sample from class two training samples, where
these correlations are offset by the self-correlations of µ̃1 and
µ̃2.

Although in this paper we focused on SDA using the nearest
centroid descriptive statistics given in (4), a closer comparison
between SDA and discriminant analysis on similarity features
is possible if the SDA classifier uses for descriptive statistics
the set of dissimilarities to each training sample

T (x) = {d(x, x1), d(x, x2), . . . , d(x, xn)}. (18)

Then the SDA decision rule becomes: classify as class one if
n∏

j=1

γj1e
λj1d(x,xj) >

n∏

j=1

γj2e
λj2d(x,xj), (19)

where λjh satisfies for h ∈ {1, 2} the constraint specified in
(9), which is:

∑

d(x,xj)∈Ω

d(x, xj)γjheλjhd(x,xj) =
1
nh

∑

xi∈Xh

d(xi, xj). (20)

Take the logarithm of (19),
n∑

j=1

(ln(γj1) + d(x, xj)λj1) >

n∑

j=1

(ln(γj2) + d(x, xj)λj2),

or equivalently, where λ1 is a vector with jth component λj1,



n∑

j=1

ln(γj1)


 + D(x)T λ1 >




n∑

j=1

ln(γj2)


 + D(x)T λ2.

(21)
Thus, using the descriptive statistics given in (18), the SDA
rule given in (21) and the discriminant analysis on similarity
features rule (17) (assuming the estimated covariance was the
identity matrix) have the same form. Also, the constants in
both rules are due to the normalization of the underlying
probability model. However, in (17) the tested correlations are
between the test feature vector D(x) and each class centroid
µ̃, whereas in (21) the tested correlations are between the test
feature vector D(x) and the parameter vector λ.

VI. DISCUSSION AND SOME OPEN QUESTIONS

In this paper, we have proposed a maximum-entropy based
architecture for generative similarity-based classifiers, result-
ing in a log-linear classifier we term SDA. We have shown
that the nearest-centroid SDA classifier can perform better
than related nearest-centroid classifiers that use the same
information for both a simple simulation and a real dataset, as
well as performing better than nearest neighbor classification.
An advantage of SDA over non-probabilistic models such as
nearest centroid classifiers, is that it estimates probabilities.
With estimated classifier probabilities, it is straightforward to
account for class prior probabilities and different misclassifi-
cation costs.

As with LDA and QDA, the power of a generative classifier
depends on how well its model matches the true class condi-
tional distributions. Gaussian mixture model classifiers are a
flexible approach to Euclidean-based learning, and SDA using
mixture models should have many of the same benefits. The
design of general SDA mixture models is an open research
question.
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