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Abstract— We introduce a definition of similarity based on
Tversky’s set-theoretic linear contrast model and on information-
theoretic principles. The similarity measures the residual entropy
with respect to a random object. This residual entropy similarity
strongly captures context, which we conjecture is important for
similarity-based statistical learning. Properties of the similarity
definition are established and examples illustrate its character-
istics. We show that a previously-defined information-theoretic
similarity is also set-theoretic, and compare it to the residual
entropy similarity. The similarity between random objects is also
treated.

I. INTRODUCTION

Similarity definitions are important for a range of clas-
sification, clustering, and other pattern recognition tasks. A
recent review of the issues in assessing similarity for pattern
recognition is given in [1]. Many similarity-based pattern
recognition solutions have used application-specific notions of
similarity. Here, we focus on definitions of similarity that can
be applied across applications.

Set-theoretic definitions of similarity assume that each sam-
ple can be described as a set of features. This allows the
application-specific information to be captured in the definition
of relevant features, while employing a more general notion
of similarity. A landmark model of set-theoretic similarity
is Tversky’s contrast similarity model [2]. Such general set-
theoretic similarity definitions provide a basis for research
into the theory and algorithms for similarity-based pattern-
recognition.

Information theoretic ideas and analysis can be effective for
assessing similarity for use in pattern recognition. Similarity
measures based on information theory include information
content [3], the amount of information needed to describe
the commonality of two objects divided by the information
needed to describe the objects [4], and similarity based on the
(uncomputable) conditional Kolmogorov complexity of two
objects [5].

In this paper, we first show that a previously defined
information-theoretic similarity [4] is also a set-theoretic con-
trast similarity as per Tversky’s definition. Then, we propose
a set-theoretic definition of similarity that measures residual
entropy in order to take into account context. We give a num-
ber of its properties and examples. Euclidean-based statistical
learning theory generally assumes random training and test
samples. The proposed residual entropy similarity provides
natural notions of similarity for random objects.

II. NOTATION AND SYMBOLS

Let O be a finite set of objects over which one would
like to define a similarity function. Let {R,A, B, E, F} ∈ O
be independent and identically drawn random objects, such
that a realization of a random object is an object, denoted
by the corresponding lower-case letter, e.g. r. Suppose that a
distribution exists over the set of objects O such that P is a
well-defined probability mass function with P (R = r) ≥ 0
and ∑

r∈O
P (R = r) = 1.

Let each object be completely described by a finite set of
features indexed by i = 1, . . . , n so that ri is the ith feature
of r. If ri = ∅ then the ith feature of r is considered missing
or unspecified. In general, P (R = r) = P (R1 = r1, R2 =
r2, . . . , Rn = rn), but unspecified features do not affect the
probability, that is P (R1 = r1, . . . , Rk−1 = rk−1, Rk =
∅, Rk+1 = rk+1, . . . Rn = rn) = P (R1 = r1, . . . , Rk−1 =
rk−1, Rk+1 = rk+1, . . . Rn = rn). In some parts of the paper
we will need to assume feature independence; in such cases
P (R = r) = Πn

i=1P (Ri = ri).
Let a = b mean that a is an object that contains the same

exact features as b. Let a ⊂ r signify that all of the features
in a are in object r. Then, the conditional probability of R
given that a ⊂ R is P (R = r|a ⊂ R).

III. SET-THEORETIC SIMILARITY

Research into similarity has a long history in psychology.
An important contribution from that field is Tversky’s set-
theoretic similarity models [2], [6]. Tversky proposed consid-
ering objects as sets of features, and measuring the similarity
between objects by appropriately weighting and combining the
intersections and differences of the feature sets. His seminal
linear contrast model for similarity between objects a and b
is defined as

s(a, b) = θf(a ∩ b)− αf(a \ b)− βf(b \ a) (1)

where f is a positive saliency function that is monotonically
increasing with respect to set inclusion, and θ, α and β are
fixed positive real numbers. Thus a and b are more similar
if their intersection increases, but less similar depending on
which features belong exclusively to a or exclusively to b.



Tversky also proposed a ratio version of the contrast model
where similarity is defined

s(a, b) =
f(a ∩ b)

f(a ∩ b) + αf(a \ b) + βf(b \ a)
. (2)

Tversky’s set-theoretic similarity models have been suc-
cessful at explaining human similarity judgements in various
similarity-assessment tasks, particularly when the objects are
not described well by low-level numerical features, and when
the assessment of similarity involves considerable cognitive
effort [7], [8], [9]. Tversky’s models of similarity have been
applied outside of psychology. One example is the use of
Tversky’s model of similarity for searching structural chemical
information databases [10]. It can be easily shown that Tver-
sky’s contrast models generalize the Hamming, Jaccard, and
other distance measures commonly used to assess similarity
between binary vectors [11], [10]. One simply describes sets
as binary vectors in which a 1 (or 0) indicates the presence (or
absence) of a feature. The saliency function is the sum of the
elements of a binary vector, or, more generally, the cardinality
of a set.

Tversky’s similarity contrast models do not generally sat-
isfy the properties for a metric (minimality, symmetry, and
the triangle inequality), and Tversky presents evidence from
experiments where humans assess similarity to show that these
properties are not necessarily correlated to how humans judge
similarity [2], [6].

IV. INFORMATION-THEORETIC SIMILARITY

In this section, Lin’s information-theoretic similarity [4] is
shown to be an example of a contrast set-theoretic similarity.
Then, Resnik’s information-theoretic similarity [3], [12] is
reviewed, and shown not to follow the contrast set-theoretic
model. Another general information-theoretic similarity is
offered by Li et al. [5]; they consider the class of metric
similarities for sequences and explain why the conditional
Kolmogorov complexity is optimal for measuring similarity.
The focus of this paper is more general, in that an information-
theoretic similarity is sought for arbitrary objects that can
be defined as sets of features, which includes the class of
sequences.

Lin [4] defines an information-theoretic similarity measure
based on the information content of feature vectors, where
information of each feature is defined in the standard way
I(r) = − log P (r):

sLin(a, b) =
2I(common(a, b))

I(description(a, b))
.

By common(a, b), Lin means the set of features common to
both objects a and b; by description(a, b) he means the set
of features needed to completely describe both objects a and
b. Lin assumes that features are independent in his examples.

Lemma 1: Let the features be probabilistically independent,
then Lin’s similarity measure is an example of Tversky’s ratio
contrast similarity as per (2), with saliency function f = I ,

and α = β = 0.5.

Proof: We use feature independence and the properties of
the logarithm to break the commonality and the descriptions
of a and b into subsets of features in order to arrive at
Tversky’s ratio contrast model. The numerator is simply
I(common(a, b)) = I(a∩ b). The denominator may be written
as I(description(a, b)) = I(a) + I(b) = 2I(a ∩ b) + I(a \
b) + I(b \ a). Lin’s similarity can thus be written as a ratio
contrast similarity with saliency function f = I:

sLin =
I(a ∩ b)

I(a ∩ b) + 0.5I(a \ b) + 0.5I(b \ a)
.

�

Resnik [3], [12] introduces a measure of similarity for
concepts in a IS-A taxonomy based on the information content
of their parent concepts. For example, both “cash” and “credit”
are children of the parent concept “medium of exchange”; both
“coin” and “bill” are subconcepts of “cash”. Resnik defines the
similarity between any two children subconcepts c1 and c2 as
the maximum information content evaluated over the set C of
all parent concepts which subsume c1 and c2,

sResnik(c1, c2) = max
c∈C

[− log P (c)],

where P (c) is the empirical probability of concept c calculated
from a dataset. Thus, the similarity sResnik(c1, c2) is the
information associated with the most improbable concept that
includes the union of subconcepts c1 and c2.

If one represents each concept as a set of features, then
Resnik’s similarity is the maximally informative feature set
out of all parent concepts that subsume c1 and c2. One expects
the intersection of the features of c1 and c2 to be features
of its direct parent concept. But the parent concept c∗ which
yields the maximum information may have a feature set very
different from that of c1 and c2. Thus, Resnik’s similarity can
be interpreted in terms of sets of features, but is not a set-
theoretic contrast similarity in that sResnick(c1, c2) is not a
positive function of common elements of c1 and c2 and a
negative function of distinct elements of c1 and c2.

V. CONTEXT-DEPENDENT SIMILARITY

Context is an important component of determining the
similarity of objects [2], [6]. For example, given a set of coins,
two Egyptian coins might be considered more similar if no
other coins are Egyptian coins than if most of the coins are
Egyptian coins. Context may play a key role in similarity-
based pattern recognition because collected training samples
for a statistical learning task are not arbitrary: informative
features imply that there is relevant information about the
class labels in the sample space of training data. For example,
consider two classification tasks: classifying incoming emails
as spam or not spam, and classifying saved emails as work or
personal. In the two different contexts, it would aid the clas-
sification if the context were automatically taken into account
when calculating the similarity. For the spam and not spam



problem, the similarity between an email from a friend and
from a colleague should be relatively higher than the similarity
between those same emails for the problem of classifying into
personal and work emails. By defining similarity within the
context of the set of training samples being used, it may be
possible to capture this important contextual information and
improve statistical learning accuracy.

Lin’s similarity takes into account context by incorporat-
ing the probability of features (their “information”) into the
similarity definition. The similarity is greater if the common
features are less likely. For some applications, the context will
be very important and must be captured more strongly by the
similarity function. To this end, one might ask, if one knew
that a random object R was at least described by the features
in common between objects a and b, then how uncertain would
one still be about R? This would specify the similarity of a
and b in light of the context of the distribution of R. Next,
we define a similarity based on this idea, present some of its
properties, and illustrate how it more strongly captures context
than Lin’s similarity.

Let the residual entropy similarity be a Tversky linear
contrast model as per (1) with θ = 1, α = β = 0.5, and
the saliency function is the mutual information: f(a ∩ b) =
I(R; a ∩ b ⊂ R), f(a \ b) = I(R; a \ b ⊂ R), and f(b \ a) =
I(R; b \a ⊂ R). Then, because I(R;X) = H(R)−H(R|X),
the residual entropy similarity is defined:

sre(a, b) = −H(R|a ∩ b ⊂ R) (3)

+
H(R|a \ b ⊂ R)

2
+

H(R|b \ a ⊂ R)
2

.

where H(R|a ∩ b ∈ R) = −
∑

r∈O P (R = r|a ∩ b ∈
R) log P (R = r|a ∩ b ∈ R). If one makes the assumption
that the features are probabilistically independent,

H(R|a ∩ b ∈ R) =

−
∑
r∈O

Πn
i=1P (Ri = ri) log(P (Ri = ri)1((a∩b)i 6=∅),

where 1() is the indicator function.
Note that the residual entropy similarity sre(a, b) is a

function of the object space O and of the distribution P of
random object R; more explicit notation would be sre(a, b, P ).
The similarity sre is only well-defined if P (a ∩ b ⊂ R) 6= 0.
In fact, in the notation section A,B,R were defined to be iid,
so that a and b are realizations of the random objects A and
B and thus P (a ∩ b ⊂ R) 6= 0. More generally, the similarity
sre(x, z) is well-defined if: x and z are realizations of random
objects X and Z distributed respectively with PX and PZ such
that PX and PZ are both absolutely continuous with respect
to P .

Next, we establish some properties of sre.

A. Properties of residual entropy similarity

1) Assume that object a is fixed, then sre(a, b) is maximum
for b = a and sre(a, a) = H(R) − H(R|a ⊂ R) =
I(R; a ⊂ R). To maximize sre(a, b) over b one seeks
to increase the size of the commonality (intersection)

between a and b and decrease their differences (set
exclusions). These goals are optimized by setting b = a.

2) The residual entropy function does not obey
the minimality property of distances, that is
sre(a, a) 6= sre(b, b). Experimental tests of how
people judge similarity have shown that minimality
often does not hold [2]. As an example, given a set
of coins, it is reasonable and may be useful to define
the similarity between the 534th penny and itself to be
smaller than the similarity between an ancient Egyptian
coin and itself.

3) The maximum residual entropy similarity is H(R)
and it is achieved when a ∩ b uniquely specifies a
random object (so that H(R|a ∩ b ⊂ R) = 0), and
the probability of the exclusions a \ b and b \ a are
one: P (a \ b) = 1 so that H(R|a \ b ⊂ R) = H(R).
But if the probability of the exclusions is one, then
the sets a \ b and b \ a must be empty, because a and
b are realizations of random objects drawn from the
same distribution. Since a \ b = ∅ and b \ a = ∅, it
must be that a = b. Thus, the maximum similarity is
the self-similarity sre(a, a) for some object a that has
a feature set that uniquely describes a random object
(that is, H(R|a ⊂ R) = 0).

4) The minimum similarity is −H(R) and it is achieved
if a ∩ b = ∅ and a and b each uniquely specify R.
Under these conditions, H(R|a ∩ b ⊂ R) = H(R) and
a \ b = a, so that H(R|a \ b ⊂ R) = H(R|a ⊂ R) = 0
and H(R|b \ a ⊂ R) = H(R|b ⊂ R) = 0.

5) Consider two different distributions PR1 and PR2 over
the same set of objects O. The range of similarities
with respect to these two different distributions may
be different, with minimum similarities −H(R1) and
−H(R2) and maximum similarities H(R1) and H(R2).

6) Symmetry holds, such that for any two objects a and b,
sre(a, b) = sre(b, a). Symmetry follows from α = β.
Psychologists have found that such symmetry does
not always hold for human similarity judgements. Our
residual entropy similarity can flexibly accommodate
asymmetrical similarity relations by appropriately
setting α 6= β.

7) The triangle inequality does not hold. For similarity, the
triangle inequality is written as s(a, c) ≥ s(a, b)+s(b, c),
that is any two objects in a triplet are at least as similar
as the sum of their similarities to the third object. Lin [4]
and Tversky [2], [6] provide intuitive counterexamples
which show that in general similarity relations are
not transitive and do not obey the triangle inequality.
Lin’s counterexample for sLin (repeated in Figure 1)
also holds for sre. In this case there are two features



Fig. 1. Counterexample of triangle inequality.

“shape” and “shading”, and each feature can take
one of two values, “circle” or “triangle” and “white”
or “gray”. Numerically, the empirical probabilities
associated with the features are P (circle) = 1/3 and
P (white) = 1/3, which give sre(a, b) = sre(b, c) = 0
but sre(a, c) = −H(R), and thus the triangle inequality
does not hold. Note that a ∩ b = ∅, thus their similarity
is the minimum achievable value.

8) Monotonicity holds, as defined by Tversky [2] such that
s(a, b) ≥ s(a, c) whenever (a∩b) ⊂ (a∩c) and (a\b) ⊂
(a \ c), because increased conditioning can only reduce
entropy.

VI. COMPARISON OF SIMILARITIES THAT ARE
INFORMATION-THEORETIC AND SET-THEORETIC

Lin’s similarity measures how improbable the features
of the intersection of two objects are, normalized by the
improbability of each object’s features. The residual entropy
similarity function measures the expected uncertainty given
the intersection of the two objects, minus the expected
uncertainty given their exclusions. The following examples
help illustrate the two similarity functions:

Example 1: Consider two objects a and b. The self-
similarities sLin(a, a) = sLin(b, b) = 1. In contrast, sre(a, a)
may not equal sre(b, b), and both self-similarities are
upperbounded by H(R). In general, sre(a, a) is higher if a
is less probable than b is.

Example 2: Consider two object pairs a, b and e, f such
that P (a ∩ b ⊂ R) = 1/10 = P (e ∩ f ⊂ R). Let R = e ∩ f
if e ∩ f ⊂ R. In contrast, given a ∩ b ⊂ R, let R = r1

with probability 1/2, and R = r2 with probability 1/2. Then
H(R|e ∩ f ⊂ R) = 0 < H(R|a ∩ b ⊂ R). That is, e ∩ f
more uniquely specifies an object than a ∩ b. Let the other
terms of sre(a, b) and sLin(a, b) be equivalent, that is let∑

i log P (ai) + log P (bi) =
∑

i log P (ei) + log P (fi) and
H(R|a \ b) + H(R|b \ a) = H(R|e \ f) + H(R|f \ e).
Then sLin(a, b) = sLin(e, f), but sre(a, b) < sre(e, f). Lin’s
similarity treats these two object pairs as equivalent, but the
residual entropy similarity views e and f as more similar
because the intersection of e and f more uniquely specifies
an object.

Example 3: Consider two pairs of objects, (a, b) and (e, f),
such that P (a ∩ b ⊂ R) = 1/5 and P (e ∩ f ⊂ R) = 1/10.

Let H(R|a ∩ b ⊂ R) = H(R|e ∩ f ⊂ R). For example,
if a ∩ b uniquely specifies R and e ∩ f uniquely specifies
R, then H(R|a ∩ b ⊂ R) = H(R|e ∩ f ⊂ R) = 0. Let
the other terms of sre(a, b) and sLin(a, b) be equivalent, that
is, let

∑
i log P (ai) + log P (bi) =

∑
i log P (ei) + P (fi) and

H(R|a \ b ⊂ R) + H(R|b \ a ⊂ R) = H(R|e \ f ⊂ R) +
H(R|f \ e ⊂ R).

Then sLin(a, b) < sLin(e, f) because the intersection of
e and f is less probable. In contrast, sre(a, b) = sre(e, f)
because given either intersection the uncertainty is the same.

Example 4: Consider two objects a and b such that a∩b = ∅.
Then sLin(a, b) = 0. In contrast, sre(a, b) will depend on how
well the exclusions a \ b = a and b \ a = b specify R, and
sre(a, b) achieves the minimum similarity −H(R) if and only
if a and b both uniquely specify R.

VII. SIMILARITY OF RANDOM OBJECTS

The similarity of random objects can be compared using the
residual entropy similarity. As an example suppose one had a
set of coins, and X is a random coin that is an Egyptian
coin with probability 1/3 or a British coin with probability
2/3, and Z is a random coin that is made of copper with
probability 5/7, of silver with probability 1/7, and of gold
with probability 1/7. Then, one can measure the similarity of
X and Z as a positive function of how well the probabilistic
intersection of X and Z specify a random coin, and a negative
function of how well the probabilistic exclusions of X and Z
specify a coin. Note that the distribution P over the object
set O defines the context in which X and Z are being
compared. This similarity of two random objects is a real
number sre(X, Z).

Next we consider the random similarity Sre(X, Z) between
two random objects X and Z. That is, Sre(X, Z) is a
random variable that takes on value sre(x, z) with probability
P (X = x, Z = z). In the next paragraphs we formal-
ize these two notions of the similarity of random objects,
sre(X, Z) and Sre(X, Z), and show that they are related in
that E[Sre(X, Z)] = sre(X, Z).

Let X, Z ∈ O be independent random objects with prob-
ability distributions PX and PZ such that PX and PZ are
absolutely continuous with respect to P . Then X ∩ Z is a
random object with probability P (X ∩Z = φ) for any object
φ ∈ O. Define X \ Z and Z \X in the same manner.

Then the deterministic residual entropy similarity of random
objects X and Z is

sre(X, Z) = −H(R|X ∩ Z ⊂ R)

+
H(R|X \ Z ⊂ R)

2
+

H(R|Z \X ⊂ R)
2

, (4)

where

H(R|X ∩ Z ⊂ R) =
∑
φ∈O

P (X ∩ Z = φ)H(R|φ ⊂ R). (5)

Also, a random similarity of random objects X and Z can be
defined where Sre(X, Z) = sre(x, z) with P (X = x, Z = z).



Then the expected random similarity can be defined

E[Sre(X, Z)] =
∑
x∈O

∑
z∈O

P (X = x,Z = z)sre(x, z). (6)

There exists a well-developed general theory of random sets
[13], which considers random sets that have realizations that
may be continuous and infinite (for example, the set defined
by an open line segment on the real line). In that general
theory there are a number of different notions of expectation.
For this work, the sets are constrained to be finite sets of
discrete features selected from a finite discrete sample space
O, and thus much of the complex machinery needed for
general random set theory is not needed here.

Lemma 2: E[Sre(X, Z)] = sre(X, Z).

Proof: The similarity sre(X, Z) is composed of three terms,
and E[Sre(X, Z)] can be similarly expanded into three terms
by expanding the term sre(X, Z) in (6) into its three terms as
per (3) and distributing. Then the first term of E[Sre(X, Z)]
is ∑

x∈O

∑
z∈O

P (X = x, Z = z)H(R|x ∩ z ⊂ R)

=
∑
x∈O

∑
z∈O

P (X = x, Z = z)H(R|x ∩ z ⊂ R)(1)

=
∑
x∈O

∑
z∈O

P (X = x,Z = z)H(R|x ∩ z ⊂ R)∑
φ∈O

P (X ∩ Z = φ)


=
∑
φ∈O

∑
x∈O

∑
z∈O

P (X = x,Z = z)

P (X ∩ Z = φ)H(R|φ ⊂ R)

=
∑
φ∈O

P (X ∩ Z = φ)H(R|φ ⊂ R)(∑
x∈O

∑
z∈O

P (X = x,Z = z)

)
=
∑
φ∈O

P (X ∩ Z = φ)H(R|φ ⊂ R) (7)

It is seen that (7) is equivalent to the first term of
s(X, Z), as per (4) and (5). The same logic holds
for the second and third term. Thus, every term of
E[Sre(X, Z)] is equal to every term of sre(X, Z).
�

VIII. DISCUSSION

The proposed sre is a set-theoretic definition of similarity
that uses information theory to take into account context when
assessing the similarity of two objects. The similarity sre has
different properties than other proposed similarity functions,
and its properties reflect the findings of Tversky and others
about human conceptions of similarity.

Theoretical results for similarity-based learning can be
based on drawing iid training and test samples from class
conditional distributions, as is often assumed for the theory
of standard Euclidean-based learning [14]. Consider an ex-
ample of similarity-based statistical learning. Suppose a set
of objects {xj}, j = 1, . . . , J is drawn from the distribution
of spam emails with pmf PX , and suppose another set of
objects {zk}, k = 1, . . . ,K is drawn from the distribu-
tion of not spam emails PZ . A “test” email t is drawn
from the distribution PR = .5PX + .5PZ . The similarities
{sre(t, xj , PR), sre(t, zk, PR)} are well-defined because PX

and PZ are absolutely continuous with respect to PR. Then, a
1-nearest neighbor decision rule would classify t as the class
label of the training object that maximizes the similarity sre.

In general, the development of similarity-based learning the-
ory and algorithms may benefit from similarity functions that
are set-theoretic, information-theoretic, that capture context,
and that are well-defined for random objects from different
class conditional distributions.
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