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Abstract—We investigate parameter-based and distribution-
based approaches to regularizing the generative, similarity-based
classifier called local similarity discriminant analysis classifier
(local SDA). We argue that regularizing distributions rather than
parameters can both increase the model flexibility and decrease
estimation variance while retaining the conceptual underpinnings
of the local SDA classifier. Experiments with four benchmark
similarity-based classification datasets show that the proposed
regularization significantly improves classification performance
compared to the local SDA classifier, and the distribution-
based approach improves performance more consistently than
the parameter-based approaches. Also, regularized local SDA
can perform significantly better than similarity-based SVM clas-
sifiers, particularly on sparse and highly nonmetric similarities.

Keywords-local similarity discriminant analysis; regularized
local similarity discriminant analysis;

I. SIMILARITY-BASED CLASSIFICATION

Similarity-based classifiers learn from a set of pairwise

training similarities, training class labels, and from the sim-

ilarities between a test sample and the training samples [1].

Similarity-based classifiers are independent of a chosen sim-

ilarity measure, which is usually problem-dependent and can

subsume complex relationships between complex, heteroge-

neous samples. In this paper, we focus on the problem of

designing generative classifiers for similarity-based learning.

Here, the goal is to create class-conditional probabilistic

models of the given similarities. Generative similarity-based

classifiers differ from the standard metric-based generative

classifiers, such as quadratic discriminant analysis and Gaus-

sian mixture models, because the modeled quantity is the

pairwise similarities between the samples rather than the

numerical feature vectors that describe the samples. Producing

class probabilities is important in many practical systems

where there may be skewed class priors or asymmetric mis-

classification costs, or where probabilities are required as an

input to the next component in the system or to fuse with

probabilistic information about the class label derived from

other sources.

Recently, an effective generative classifier for similarity-

based learning called similarity discriminant analysis (SDA)
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and a local version (local SDA) were proposed [2], [3].

We review local SDA in Section 3, and discuss how this

classifier can fail. In Section 4, we follow our analysis with

a discussion of several regularization strategies for local SDA

and with the main contribution of this paper: that appropriate

regularization can both make the SDA model more flexible

and lower the estimation variance. Experiments in Section 5

show that the proposed regularized local SDA improves on

local SDA and can outperform other state-of-the-art similarity-

based classifiers.

Previous research on generative classifiers for similarity-

based learning treated the n-vector of similarities between any

sample and the n training samples as a feature vector, and

in this way created a Euclidean space based on the training

similarities. Standard generative classifiers were then trained in

this space, such as regularized linear or quadratic discriminant

analysis [4], [5]. These classifiers have the drawback that their

generative models grows as O(n) and O(n2), and are arguably

difficult to interpret.

Another vein of related research considers generative mod-

els for random graphs or networks [6]. This research models

the distribution of graphs exponentially, and could be directly

applied for cases of similarity-based learning where similar-

ities only took on binary values. For the general case of

similarity-based learning, how to adapt this type of generative

model is an open question.

II. BACKGROUND ON SIMILARITY-BASED LEARNING

In this section we discuss some applications in which

similarity-based learning arises, and review other approaches

to similarity-based classification; see [1] for a more thorough

review of related work.

A. Similarity-based Problems

Similarities that stem from heterogeneous data often do not

manifest the properties of inner products. These non-metric

similarities arise naturally in fields such as genomics, natural

language processing, human commerce, computer vision, and

psychology.

Laub et al. [7] demonstrate that indefinite similarities can

encode useful information in their non-metricity, and contend

“in the realm of human similarity judgments, one may not



speak of artifact or erroneous judgements with respect to an

Euclidean norm. On the contrary: having an Euclidean norm

is rather the exception.”

In this paper we will show results on experiments for

four different similarities, which we detail here to illustrate

the diversity of classification problems for which similarity-

based classifiers are a natural fit. These datasets stem from

human experience and are available from the Similarity-based

Learning Repository 1.

The Amazon problem is to classify books as fiction or

non-fiction, where the similarity between two books is the

symmetrization of the percentage of customers who bought

one books after viewing the other book. There are 96 samples

in this dataset, 36 from class Non-fiction, and 60 from class

Fiction. This similarity function strongly violates the triangle

inequality. This dataset is also especially interesting because

this similarity strongly violates the minimality property that

says a sample should be maximally similar to itself, because

customers often buy a different book if they first view a poorly-

reviewed book. Fig. 1 shows the 96×96 similarity matrix and

its spectra.

The Aural Sonar problem is to distinguish 50 target sonar

signals from 50 clutter sonar signals. Listeners perceptually

evaluated the similarity between two sonar signals on a scale

from 1 to 5. The pairwise similarities are the sum of the eval-

uations from two listeners, resulting in a perceptual similarity

from 2 to 10 [8]. This dataset is interesting because perceptual

similarities are often non-metric.

The Patrol problem is to classify 241 people into one of

8 patrol units based on who people claimed was in their

unit when asked to name five people in their unit [9]. Like

the Amazon dataset, this is a sparse dataset, as most of the

similarities are zero.

The Voting problem is to classify 435 representatives into

two political parties based on their votes [10]. The categorical

feature vector of yes/no/abstain votes was converted into

pairwise similarities using the value difference metric, which

is a (dis)similarity designed to be useful for classification [11].

The voting similarity is almost metric.

B. Other Similarity-based Classifiers

Besides generative classifiers, there are three major ap-

proaches to similarity-based classification: nearest neighbor

methods, treating similarities as features, and treating similar-

ities as kernels. Treating similarities as features means using

the similarities to the n training samples (or some subset

thereof) as a feature vector, and then classifying with any

standard metric learning algorithm. In our experiments, we

represent this approach with a support vector machine (SVM)

applied (with a linear kernel) to the similarities-as-features

[12]. Treating similarities as kernels entails approximating the

similarity training matrix by a symmetric positive definite

matrix which can be used as a kernel in an SVM. Three

popular ways to approximate the similarity matrix are to set

1idl.ee.washington.edu/similaritylearning
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Fig. 1. Top: The 96 × 96 similarity matrix is shown for the samples
in the Amazon dataset. Darker color corresponds to greater similarity. One
sees from the diagonal that the Amazon samples are not necessarily most
similar to themselves. Also, the Amazon similarities are mostly zero (shown
as white). Bottom: The eigenvalues for the Amazon similarity matrix are
shown; Amazon has the largest relative-magnitude negative eigenvalues out
of the five datasets considered in the experiments.

any negative eigenvalues to zero (clip), to flip any negative

eigenvalues so they become positive (flip), and to add the

identity matrix scaled by the minimum (negative) eigenvalue

to the original similarity matrix (shift) [13]. Clipping the

spectrum produces the nearest positive semidefinite matrix

in terms of the Frobenius norm. Flipping the eigenvalues is



similar to treating SST as a kernel, and thus behaves similarly

to using the similarities-as-features. Shifting the spectrum has

the property that only the self-similarities are changed [14].

III. REVIEW AND ANALYSIS OF LOCAL SDA

In this section we briefly review the local SDA classifier

and motivate the need for regularization.

A. Review of Local SDA

Assume that the test and training samples belong to an

abstract space of possible samples B, such as the set of all

books. Let X ∈ B be a random test sample with random class

label Y ∈ {1, 2, . . . , G}, and let x ∈ B denote the realization

of X . Also assume that one can evaluate a relevant similarity

function s : B × B → Ω, where Ω ⊂ R is assumed to be a

finite discrete space without loss of generality. Let X ⊂ B be

the set of n training samples.

The local SDA classifier follows from the standard Bayes

classifier by making the fundamental assumption that all the

information about X’s class label depends only on local sim-

ilarity statistics. Previous work considered different variants

[15], but here we restrict attention to the local centroid variant

that seems to be most effective [2].

Given a test sample x, the local centroid µh(x) for class h

is defined as the local training sample with maximum sum-

similarity to its class:

µh(x) solves arg max
a∈Xh∩N (x)

∑

z∈Xh∩N (x)

s(z, a), (1)

where Xh ⊂ X is the subset of training samples from class h

and N (x) is the neighborhood of x defined as its k nearest

(most similar) training samples. Then, the classification rule

for the local SDA classifier is to classify a test sample x as the

class ŷ that minimizes the expected misclassification costs2:

arg min
f=1,...,G

G
∑

g=1

C(f, g)

(

G
∏

h=1

γgheλghs(x,µh)

)

P (g), (2)

where C(f, g) is the cost of classifying as class f when the

true class is g, P (g) is the a priori probability of class g,

and P (x|Y = g) is modeled as
∏

h P (s(x, µh)|Y = g) =
∏

h γgheλghs(x,µh), that is, the product of class-conditional

probabilities of the similarity of x to the centroid µh of class

h, given that x is in class g.

The parameters {λgh} are determined by numerical min-

imization under the method-of-moments constraint that the

expected value of the similarity be equal to the observed

average similarity,

EP (s(x,µh)|Y =g)[s(X, µh)] =

∑

z∈Xg∩N (x) s(z, µh)

|Xg ∩N (x)|
, (3)

and the parameters {γgh} are determined by normalization.

2We drop the cumbersome notation µh(x) from the rest of the paper in
favor of µh, but it should be understood that the class centroids are determined
from the neighborhood N (x), and thus depend on the test sample x.

In summary, the SDA model can be interpreted as the

maximum likelihood exponential model with independence

assumptions, or equivalently as the maximum entropy distri-

bution that satisfies the set of mean constraints given by (3).

B. Analysis of Local SDA

We have found experimentally that the local class-

conditional estimates have high variance, and that often the

local SDA classifier must degenerate to a simpler model.

Consider the case that a neighborhood N (x) contains only one

training sample from any class g, then the class-conditional

pmfs for that class would be a Kronecker delta with all its

probability concentrated on the self-similarity of the single

neighborhood training sample. Unless the test sample hap-

pened to have that exact similarity, the likelihood of the

test sample’s similarities would be considered zero for that

class. Similar difficulties can arise if there are only a few

neighbors from a class, or in general if the resulting local

model is degenerate. In fact, our analysis suggests that this

degeneracy problem occurs often, and that how it is handled

can significantly change the performance of local SDA.

In the original local SDA paper [2], the degeneracy problem

was handled by reverting to a local nearest centroid classifier

[16] for all the classes if any class had exactly one neighbor.

This is suboptimal for multiple reasons: (1) degeneracies can

happen even if there is more than one neighbor; (2) for classi-

fication problems with many classes it is likely that some class

will only have one neighbor in a test sample’s neighborhood;

(3) reverting to a local nearest centroid classifier does not

produce probability estimates; and (4) reverting to a local

nearest centroid classifier creates a conceptual and empirical

discontinuity as the neighborhood size changes.

Another approach to cope with the local scarcity of samples

from one or more classes is to increase the size of the neigh-

borhood k until satisfactory estimates of each class-conditional

distribution can be achieved. This approach decreases the

localized quality of local SDA, potentially increasing the

model bias because a larger neighborhood size must be used.

IV. REGULARIZED LOCAL SDA

We propose regularizing the local SDA classifier as a way

to solve the degenerate model problem described in Sec III-B,

while retaining both the localized and generative characteris-

tics of local SDA. We discuss three methods for regularizing

the local SDA classifier: regularizing the parameters λgh, regu-

larizing the mean similarity constraint (3), and regularizing the

class-conditional distributions P (s(x, µh)|Y = g). We argue

that this third option is most consistent with the model intuition

and affords the best bias-variance trade-off.

A. Regularizing the Model Parameters

One of the first regularized generative models was Fried-

man’s proposal to regularize the covariance matrix in quadratic

discriminant analysis (QDA) [17]. A straightforward general-

ization of Friedman’s success with regularized QDA would



suggest regularizing the model parameter λgh, by linearly

combining it with a more stable analogous parameter λ̃gh:

λ̂gh = (1 − α)λgh + αλ̃gh, (4)

where the parameter 0 ≤ α ≤ 1 controls the weight of

the regularization and can be chosen by cross-validation. The

parameter λ̃gh could for example be the model parameter for

the corresponding global SDA model (that is, for k = n), or

could be the model parameter averaged over classes:

λ̃gh = λ̃ =
1

G2

G
∑

g=1

G
∑

h=1

λgh.

This regularization will generally result in flatter exponential

models. The regularized parameter λ̂gh is the solution to some

mean constraint

EP̂ (s(x,µh)|Y =g)[s(X,µh)] = c, (5)

but because the similarity domain is discrete and finite, there

is no straightforward relationship between the c in (5) and the

unregularized empirical average in the constraint (3). Thus,

the intuitive connection between λ̂gh and the mean similarity

is lost, and we find it difficult to interpret this regularization

or relate it back to the maximum entropy framework used to

justify local SDA.

B. Regularizing the Empirical Mean

A more interpretable regularization results from regularizing

the empirical class-conditional mean in (3) and solving for the

exponential model parameter λ̂gh that satisfies:

EP̂ (s(x,µh)|Y =g)[s(x, µh)]

= (1 − α)

∑

z∈Xg∩N (x) s(z, µh)

|Xg ∩N (x)|
+ α

∑

z∈Xg
s(z, µ̃h)

|Xg|
,

where µ̃h is the global centroid for the hth class (defined by

(1) for N (x) = X ).

This strategy shifts the local mean similarity toward the

global mean similarity, and the resulting pmf is shifted cor-

respondingly, generally towards a flatter exponential. The

motivation for this type of regularization is that linearly

combining the local and global means before estimating the

parameter moderates the classification variance caused by the

randomness of choosing only a local neighborhood of training

samples.

We note a drawback to this regularization approach. A good

regularizer should be a more stable version of what is ill-

posed. But, we expect the global average similarity to the

global centroid s(z, µ̃h) to differ qualitatively from the local

average similarity that it is regularizing in (6).

C. Regularizing the Class-conditional Probabilities

The approaches in the previous two sections regular-

ize the parameters that control the class-conditional pmfs

P (s(x, µh)|Y = g) by either directly regularizing the expo-

nents {λgh}, or indirectly regularizing them by regularizing

the mean constraints. In contrast, here we propose to regu-

larize the local class-conditional pmfs themselves by linearly

combining them with the average of the local class-conditional

pmfs computed from the training set. This regularization

should reduce estimation variance, but also enlarges the model

space to include more than exponential distributions, thus

increasing the model flexibility.

Let z ∈ X be a training sample, and let N (z) ⊂ X be its

neighborhood consisting of its k most similar samples from

X . Let training sample’s z’s class h local centroid µh(z) be

computed from N (z), that is

µh(z) solves arg max
a∈Xh∩N (z)

∑

q∈Xh∩N (z)

s(q, a).

Denote by Pz(s(q, µh(z))|Y = g) the gth-hth local class-

conditional pmf computed from z’s neighborhood such that

is Pz(s(q, µh(z))|Y = g) is the class-conditional pmf deter-

mined by solving the mean constraint,

EP (s(q,µh(z))|Y =g)[s(Q, µh(z))]

=

∑

q∈Xg∩N (z) s(q, µh(z))

|Xg ∩N (z)|
. (6)

Then to each training sample z there corresponds a local

class-conditional pmf Pz(q, µh(z))|Y = g) for g = 1, . . . , G

and h = 1, . . . , G, and repeating the process for each of the n

training samples creates a set of n pmfs {Pz(q, µh(z))|Y =
g)} for each of the possible G2 choices of g and h. We average

these training local class-conditional pmfs for each choice of

g and h:

Pave(sh|g)
4
=

1

|X |

∑

z∈X

Pz(s(q, µh(z))|Y = g). (7)

Each average local class-conditional pmf Pave is linearly

combined with the corresponding test sample’s estimated local

class-conditional pmf to produce the regularized local class-

conditional pmfs used in the classifier. That is, given a test

sample x and its neighborhood N (x) of size k, the G2 local

pmfs are each regularized as

P̂ (s(x, µh)|Y = g) (8)

= (1 − α)P (s(x, µh)|Y = g) + αPave(sh|g)

The proposed marginal-regularized local SDA classification

rule then takes the product of the assumed-independent regu-

larized marginals:

arg min
f=1,...,G

G
∑

g=1

C(f, g)

(

G
∏

h=1

P̂ (s(x, µh)|Y = g)

)

P (g).

(9)

We recently proposed an alternative distribution-based

method that regularizes based on the local joint pmfs [18].

That is, we first regularize each marginal class-conditional

pmf, and multiply the regularized marginals to form the

G class-conditional joint pmfs used in (9). For notational

simplicity, denote by T (x)
4
= {s(x, µ1), . . . , s(x, µG)}, the

set of similarities of test sample x to the class centroids. Also



denote each class-conditional joint pmf and its regularized

counterpart by

P (T (x)|Y = g)
4
=

G
∏

h=1

γgh exp(λghs(x, µh))

P̃ (T (x)|Y = g)
4
=

G
∏

h=1

Pave(sh|g).

Then we compute regularized class-conditional joint pmfs

as

P̂ (T (x), g) = (1 − α)P (T (x)|Y = g)P (g) +

αP̃ (T (x)|Y = g)P̃ (g), (10)

where P (g) and P̃ (g) are the g class prior probabilities

estimated from N (x) and from X respectively. Then the

proposed joint-regularized local SDA classification rule is

arg min
f=1,...,G

G
∑

g=1

C(f, g)P̂ (T (x), g). (11)

The proposed approach of regularizing the pmfs them-

selves has several desirable properties. First, any degenerate

Kronecker delta functions that arise as solutions for a local

pmf P (s(x, µh)|Y = g) are regularized by a smoother pmf

Pave(sh|g). The regularizing pmf Pave(sh|g) is itself smooth

because it is an average of many local exponential pmfs com-

puted from the training set, and any Kronecker delta functions

that arise as solutions for any particular Pz(s(q, µh(z))|Y =
g) are averaged with the rest of the local training pmfs.

A second desirable property of regularizing the local class-

conditional pmfs is the increased modeling flexibility. In gen-

eral, each Pave(sh|g) is not exponential, but rather a weighted

sums of class-conditional exponential functions over a discrete

similarity domain. In fact, because the SDA framework allows

both positive and negative values for {λgh}, the regularizing

pmfs can flexibly model complicated distributions of the class-

conditional similarities.

A third desirable property of the proposed regularization is

that it regularizes using analogous quantities: the test sample’s

local class-conditional pmf is regularized by other samples’

local class-conditional pmfs.

Lastly, we argue that the action of regularizing the local

test pmfs with the corresponding local training sample pmfs

is easy to interpret in terms of the effect of choices of the

regularization parameter α, which makes it easier to decide

cross-validation choices and to interpret the cross-validated

regularization parameter.

V. EXPERIMENTS

We compare the marginal-regularized and joint-regularized

local SDA to the original local SDA, and to five other state-

of-the-art similarity-based classifiers.

Four datasets were partitioned 20 times into disjoint bench-

mark partitions of 80% training samples and 20% test sam-

ples. For each of the 20 partitions of each dataset we

chose parameters using ten-fold cross-validation for each

of the classifiers shown in Table I. Cross-validation pa-

rameter sets were based on recommendations in previously

published papers and popular usage. For k-NN and the lo-

cal SDA classifiers, the choice of neighborhood sizes was

k ∈ {1, 2, 3, . . . , 16, 32, 64,min(n, 128)}. For regularized lo-

cal SDA, the choices for the convex regularizing parameter

were α ∈ {10−6, 10−3, 0.01, 0.1, 0.5, 0.9}. For all four SVMs,

the standard C parameter choices were 10−3, 10−2, . . . , 105.

Multi-class implementations of the SVM classifiers used
(

n
2

)

pairwise classifiers.

A. Classification Results

Results are shown in Table I, averaged over the 20 random-

ized partitions. For each dataset, the best classifier and the clas-

sifiers not statistically significantly worse are in bold, where

the significance was evaluated with the one-sided Wilcoxon

signed rank test (p = 0.05).

For all four datasets, at least one of the the regularized

local SDA classifiers provides better performance than the

local SDA classifier, and for three datasets the performance

improvement is statistically significant. Regularizing either the

joint or the marginal local SDA pmfs improves classification

across different data sets more consistently than regularizing

the local SDA parameters. The most significant gains are on

the Amazon and Aural Sonar datasets: regularizing the joint

distributions produces a 19% gain on Amazon and a 8% gain

on Aural Sonar over the original local SDA, and regularizing

the marginal distributions produces a 9.5% gain on Amazon

and 32% gain on Aural Sonar. Compared to other state-of-

the-art similarity-based classifiers, regularized SDA performs

better for three datasets, and significantly better than the SVM

classifiers on two datasets. The performance gap is biggest for

sparse similarities like those encountered with the Amazon

and Patrol datasets, for which regularized local SDA seems to

provide a competitive advantage.

VI. DISCUSSION AND HYPOTHESES

We investigated five regularization approaches for the gen-

erative, similarity-based local SDA classifier. We discussed

why regularizing the exponential parameters or the mean con-

straints may be the strictest generalization of other successful

regularization methods like regularized QDA, but provide a

suboptimal bias-variance trade-off for the local SDA classifier.

We argued that regularizing the test sample’s exponential local

class-conditional pmfs with an average of local training class-

conditional pmfs can provide a better bias-variance trade-off

than regularizing the parameters. Regularizing local pmfs with

average local pmfs also provides a more straightforward inter-

pretation of the regularization process, because conceptually

analogous quantities are combined.

Experimental results demonstrated that this proposed regu-

larization consistently and sometimes significantly improves

the classification performance of the local SDA classifier,

and can perform better than similarity-based SVM classifiers.

In particular, we hypothesize that the regularized local SDA

classifier will perform best relative to global kernel-based



TABLE I
AVERAGE (STANDARD DEVIATION) OF THE PERCENT TEST ERROR OVER 20 RANDOM TEST/TRAIN SPLITS. FOR EACH DATASET, THE BEST CLASSIFIER

AND THE CLASSIFIERS NOT STATISTICALLY SIGNIFICANTLY WORSE ARE IN BOLD.

Amazon Aural Sonar Patrol Voting
(2 classes) (2 classes) (8 classes) (2 classes)

Local SDA 11.05 (7.61) 17.75 (7.66) 11.77 (4.62) 6.38 (2.07)

Local SDA (joint-regularized) 8.95 (5.79) 16.25 (5.67) 11.35 (4.63) 5.40 (1.63)

Local SDA (marginal-regularized) 10.00 (6.21) 12.00 (6.20) 11.98 (4.36) 5.46 (2.05)

Local SDA (global λ̃gh-regularized) 10.00 (7.42) 17.25 (5.36) 11.87 (4.42) 5.63 (1.89)

Local SDA (average λ̃-regularized) 10.26 (7.15) 18.25 (5.54) 11.87 (4.42) 5.46 (2.12)

Local SDA (mean constraint-regularized) 11.32 (8.69) 17.00 (4.85) 11.98 (4.70) 5.06 (1.83)

k-NN 9.47 (6.57) 17.00 (7.65) 11.88 (4.42) 5.80 (1.83)

SVM w/ clipped spectrum 12.37 (7.68) 13.00 (5.34) 38.75 (4.81) 4.89 (2.05)

SVM w/ flipped spectrum 20.79 (10.97) 13.25 (5.31) 47.29 (5.90) 4.94 (2.03)

SVM w/ shifted spectrum 15.53 (13.05) 14.00 (5.61) 40.83 (5.37) 5.17 (1.87)

SVM on similarities as features 16.05 (11.59) 14.25 (6.94) 42.19 (5.85) 5.40 (2.03)

methods when the similarities are sparse and strongly non-

metric.

For local SDA and its regularized variants, classifying a

test sample x requires estimating a new local class centroid

µh(x), which is determined as the neighbor from class h

whose sum-similarity to other neighbors from the same class is

maximum. In practice the cross-validated neighborhood sizes

are relatively small so that the concomitant cost of summing

a few similarity values for each test sample is negligible.

Standard generative classifiers such as QDA estimate G

class-conditional models. In contrast, SDA-type classifiers

estimate G2 class-conditional models by solving G2 mean-

constrained function minimization problems. Regularized local

SDA further requires solving one set of G2 constraints for

each training sample, and the required classifier training time

is proportional to nG2. For large datasets the training time

can become impractical, although we emphasize that training

is done only once per dataset and the estimated regularizing

pmfs are stored in memory, so that classifying each test sample

is an almost instantaneous operation.

An approach to lowering the training costs of our proposed

distribution-based SDA regularization schemes might be to

reqularize the local SDA pmfs with an exponential pmf fitted

to the average histogram of local similarity counts. This

approach would require solving only one set of G2 mean-

constrained function minimizations for each dataset during the

training phase and would rely on counting the occurrences of

the local similarity values, which is much faster than solving

many optimization problems.

Here, we used as a regularizer the simple average of

the training sample pmfs. An extension to this work might

adaptively regularize, for example by weighting each training

sample’s pmf in the regularizer based on the relative simi-

larity of each training sample to that particular test sample.

Yet another approach might be to adopt Bayesian methods

to estimate the local SDA pmfs, for example by enlarging

the space of possible pmfs to include the multinomial and

Dirichlet families. Characterizing the trade-offs between the

classification performance, the model flexibility, and the com-

putational efficiency of these possible alternatives remains an

open area of research.
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