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Abstract. We investigate a multi-task approach to similarity discrim-
inant analysis, where we propose treating the estimation of the differ-
ent class-conditional distributions of the pairwise similarities as multiple
tasks. We show that regularizing these estimates together using a least-
squares regularization weighted by a task-relatedness matrix can reduce
the resulting maximum a posteriori classification errors. Results are given
for benchmark data sets spanning a range of applications. In addition, we
present a new application of similarity-based learning to analyzing the
rhetoric of multiple insurgent groups in Iraq. We show how to produce
the necessary task relatedness information from standard given training
data, as well as how to derive task-relatedness information if given side
information about the class relatedness.
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1 Introduction

Generative classifiers estimate class-conditional distributions from training sam-
ples, and then label a new sample as the class most likely to have generated
it [21]. In standard metric-space learning problems, the class-conditional distri-
butions’ support is over the Euclidean space of feature vectors. For example,
a standard metric-space generative classifier is quadratic discriminant analysis
(QDA), which models each class as a multivariate Gaussian [16,35]. More flexible
generative models include Gaussian mixture models [19,21] and locally Gaussian
models [17].

In contrast, generative similarity-based classifiers build class-conditional prob-
abilistic models of the similarities between training samples, and label any new
sample as the class most likely to have generated its similarities to the training
data. That is, in generative similarity-based classification, the class-conditional
distributions’ support is over a similarity space. Similarity discriminant analysis
(SDA) models the class-conditional distributions of the similarities as exponen-
tial functions [7]. The local similarity discriminant classifier (local SDA) models
as exponential functions the class-conditional distributions of the similarities of
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a test sample to the k-most similar samples from a training set [5]. Successful
classification with local SDA, as with any generative similarity-based or feature-
based classifier, depends on the ability to estimate numerically-stable model
parameters. A standard approach to ensuring low variance parameter estimates
is regularization.

This paper proposes a multi-task approach to regularizing the parameters of
the class-conditional exponential models in the local SDA classifier. The moti-
vating hypothesis of the multi-task approach is that learning multiple related
tasks in parallel can reduce estimation variance when compared to learning the
tasks individually. The successful application of the multi-task approach to many
different problems empirically supports this hypothesis, as we briefly review in
Sect. 4.

In this paper, the individual tasks consist of estimating the mean of the sim-
ilarities between samples from pairs of classes. The standard single-task local
SDA classifier estimates each of these class-conditional mean similarities inde-
pendently. In the proposed multi-task approach, the mean estimates are regular-
ized toward each other proportionally to their degree of relatedness, which is cap-
tured by a task relatedness matrix. The multi-task regularized mean estimates
produce more robust local SDA exponential models which result in improved
classification.

Our focus in this paper is on multi-task regularization for SDA. However,
SDA is only one of many possible methods for similarity-based learning. Besides
local SDA, a different approach to generative classification based on pairwise
similarities treats the vector of similarities between any sample and the training
set as a feature vector and applies standard feature-space generative classifiers
to the similarities-as-features. A drawback of this approach is that the model
complexity grows linearly or exponentially with the size of the training set [28,
29]. Other related research considers generative models for graphs [20], where a
graph is modeled as being drawn from an exponential distribution.

Other similarity-based learning methods are not generative. Nearest-neighbor
methods mirror standard metric space classifiers such as k-nearest neighbors (k-
NN) and classify objects based on their most similar neighbors from a training
set. Discriminative approaches to similarity-based classification also exist, owing
to the popularity of kernel methods such as support vector machines (SVMs).
One such approach treats the similarities as features, and mirrors the standard
SVM trick of forming kernels by way of inner products (or exponential functions)
operating on the vectors of similarities [18,24].

Another approach treats the entire matrix of training pairwise similarities
as the kernel. Since similarities are more general than inner products, the given
similarity matrix may be indefinite and must be transformed into an admissible
positive semi-definite kernel for use with an SVM [8–10, 26, 31, 37, 38]. SVM-
KNN is a local SVM classifier that trains the SVM only on a test sample’s
k-most similar neighbors in similarity space [39]. For indefinite similarities, it
was found to be advantageous to use local similarity-based classifiers such as
SVM-KNN or kernel ridge interpolation weighted k-NN that approximate the
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local similarity matrix with a positive definite matrix, because lower-error matrix
approximations are needed for local neighborhoods than for the entire matrix.
For a recent, comprehensive review of similarity-based classifiers, see Chen et
al. [9].

In Sect. 2 we briefly review the necessary background on local SDA and illus-
trate how the need for regularization arises. Section 3 introduces the proposed
multi-task regularization for local SDA, shows that the regularized mean simi-
larities have a closed-form solutions and discusses possible choices for the task
relatedness matrix. Section 4 discusses other approaches to multi-task learning
and contrasts them to the proposed approach. Section 5 reports experimental
results on a set of benchmark similarity datasets spanning many different types
of similarities, and Sect. 6 reports the results for a document classification prob-
lem where the documents are transcripts of statements made by Iraqi insurgent
groups. Section 7 concludes with some open questions.

2 Background on Local Similarity Discriminant Analysis

Local SDA models the distribution of similarities as discrete exponentials, and
takes its name from the discriminant curves that form the class boundaries
in similarity space, in analogy to the standard feature-space classifier QDA,
which forms discriminants in feature space. Also in analogy with feature-space
generative classifiers, local SDA follows from the standard a posteriori Bayes
classifier, which assigns a class label to a test sample x according to the rule

y = arg max
g

P (x|Y = g)P (Y = g) ,

where P (x|Y = g) is the probability of x having been generated from class g,
and P (Y = g) is the class g prior probability.

For similarity-based classification, assume that the test and training samples
belong to an abstract space B, such as the set of available Internet downloads,
the set of amino acid sequences, or the set sonar echoes. Let X ∈ B be a random
test sample with random class label Y ∈ {1, 2, . . . , G}, and let x ∈ B denote
the realization of X. Also assume that one can evaluate a relevant similarity
function s : B × B → Ω, where Ω ⊂ R is assumed to be a finite discrete space
without loss of generality, and r = |Ω|. Alternatively, the pairwise similarity for
all training and test samples considered could be given. Let X ⊂ B be the set
of n training samples, and N (x) ⊂ X be the neighborhood of a test sample x,
defined as its k-nearest (most similar) training samples. Also, let Ng(x) ⊂ N (x)
be the subset of x’s neighbors that belong to class g.

The standard local SDA classifier makes the fundamental assumption that
all the information about x’s class label depends only on a set of local similarity
statistics computed from N (x), T (x) =

⋃
h=1...G Th(x), where Th(x) is the local

similarity statistic computed from Nh(x). Given a test sample x, the local SDA
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classifier assigns x the label y according to the maximum a posteriori rule

y = arg max
g

P (T (x)|Y = g)P (Y = g) (1)

= arg max
g

G∏
h=1

Ph(Th(x)|Y = g)P (Y = g), (2)

where (2) is produced from (1) by assuming that the similarity statistics are
independent such that the joint class-conditional probability is the product of
the marginals.

Several choices are possible for the local similarity statistics T (x) [5, 7]. In
practice, an effective choice are the sets of similarities between x and all its k
most-similar neighbors from each class [32], so that Th(x) = {s(x, z)|z ∈ Nh(x)}.
With this choice, each class-conditional marginal pmf is modeled as the average
of exponential functions of the similarities:

Ph(Th(x)|Y = g)
4
=

1
kh

∑
z∈Nh(x)

P̂ (s(x, z)|Y = g)

=
1
kh

∑
z∈Nh(x)

γgheλghs(x,z), (3)

where kh = |Nh(x)|.
Each of the parameters {λgh} is determined by numerical minimization un-

der the following method-of-moments constraint that the expected value of the
similarity be equal to the average similarity computed from the neighborhood
training samples:

EPh(Th(x)|Y =g)[s(X, z)] =

∑
za∈Ng(x)

∑
zb∈Nh(x) s(za, zb)

kgkh
. (4)

Each of the G2 mean-constraints (4) is solved by one unique λgh, but there may
be numerical difficulties. For example, when the neighborhood is small, when
the discrete similarity domain consists of few distinct values, or when all of x’s
neighbors are equally maximally (or minimally) similar to each other, the local
mean constraint could take on an extremal value:

EP (s(x,µh)|Y =g)[s(X, µh)] = c, c ∈ {inf(Ω), sup(Ω)}, (5)

There is no solution to (5) with a finite λgh – the solution to (5) is a Kronecker
delta pmf, δ(s(x, z) − c). In practice, degenerate pmfs can also arise when a
feasible solution exists, but give rise to an exponential function so steep that it
effectively acts like a Kronecker delta, which incorrectly concentrates all proba-
bility mass on an extremal similarity value c, causing classification errors.

The local SDA formulation (3) mitigates, but does not eliminate, the delete-
rious effects of degenerate pmfs by modeling the class-conditional marginals as
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averages of exponentials, which smooth – or regularize – the effects of the com-
ponents [32]. Other strategies considered in previous work included regularizing
the exponential pmfs by convex combinations with averages of local exponential
pmfs, and regularizing the model parameters (the exponents or the means) by
convex combinations with baseline parameter values [6]. Yet another strategy
considered a Bayesian estimation approach whereby the requirement that the
pmfs be exponential was relaxed and the similarities were assumed multinomi-
ally distributed with Dirichlet priors on the parameters [32].

All previous strategies regularized each class-conditional pmf in isolation. In
the following we present the main contribution of this paper: a multi-task strat-
egy for regularizing the pmfs that exploits the relatedness between the classes.

3 Multi-task Regularization of Mean Similarity Estimates

Given a test sample x, we define as one task the problem of estimating the (g , h)
mean class-conditional pairwise similarity that appears on the right-hand-side
of (4) to solve for the local exponential model. As discussed in the previous
section, simply taking the empirical average can lead to numerical problems and
non-finite estimates for λgh. Instead, we propose estimating all G2 mean class-
conditional pairwise similarities jointly as a multi-task problem. Then we use
the (g , h) multi-task estimate as the right-hand side of (4) to solve for a more
stable exponential class-conditional model.

Denote the set of G2 average similarities by {vgh}, where vgh is the average
similarity between x’s neighbors that belong to class g and x’s neighbors that
belong to class h. That is, {vgh} are the average similarities the on right side of
(4). We find regularized estimates of the mean similarities

{v∗gh}G
g,h=1 = arg min

{v̂gh}G
g,h=1

G∑
g,h=1

∑
za∈Ng(x)

∑
zb∈Nh(x)

(s(za, zb)− v̂gh)2)+

η

G∑
j,k=1

G∑
l,m=1

A(vjk, vlm)(v̂jk − v̂lm)2. (6)

Substituting the solutions into the mean constraint equations (4) yields the
regularized-mean constraints

EPh(Th(x)|Y =g)[s(X, z)] = v∗gh , (7)

whose numerical solutions produce the corresponding local SDA model param-
eters {λ∗gh}.

The first term of (6) minimizes the empirical loss. If one solves (6) with no
regularization (η = 0), the solutions are simply the empirical average similarities
{vgh}. The second term of (6) regularizes the average similarities proportionally
to their degree of relatedness, which is captured by the G2 × G2 matrix A.
Each element A(vjk, vlm) quantifies the relatedness of the tasks. We base the
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task relatedness on the empirical average similarities vjk and vlm. We detail our
choice for the relatedness A in Sect. 3.2.

The regularizing action of the second term of (6) shrinks the mean similarities
toward each other, but weights the shrinkage by their relatedness. The effect
in the degenerate case (5) is that the average similarity moves away from the
extremal value c and shrinks toward the average similarity estimates for the other
pmfs proportionally to their relatedness. Thus, the corresponding exponential
class-conditional pmf estimate becomes feasible, that is the average similarity
has been regularized.

Note that the regularization operates across classes: The average similarity of
samples from class g to samples of class h, vgh, is regularized toward the average
similarity of the samples from class l to class m, vlm. This is in contrast with
other multi-task learning approaches, which associate a task with a sample;
instead, the proposed approach associates each task to an exponential class-
conditional marginal pmf, which is uniquely determined by the average local
similarity parameter. Thus, matrix A captures the degree of relatedness between
two exponential pmfs.

3.1 Closed-form Solution

The minimization problem in (6) is convex and, if A is invertible, has the closed-
form solution

v∗ = (I − Ã)−1ṽ , (8)

where I is the diagonal unit matrix. The vector ṽ ∈ RG2
and the matrix Ã ∈

RG2×G2
have components:

ṽgh =

∑
za∈Ng(x)

∑
zb∈Nh(x) s(za, zb)

kgkh + η
∑

l,m 6=g,h A(vgh, vlm)
and

Ã(vgh, vlm) =

{
ηA(vgh,vlm)

kgkh+η
P

g,h6=l,m A(vgh,vlm) for{g, h} 6= {j, k}
0 for{g, h} = {j, k}

These expressions result from setting to zero the partial derivatives of (6) with
respect to v̂gh, assuming that the task relatedness A is symmetric, and simpli-
fying.

3.2 Choice of Task Relatedness A

Ideally, the task relatedness matrix A conveys information about the strength of
the connection between the tasks, but any symmetric invertible matrix can be
used as the task relatedness matrix A. For the benchmark classification experi-
ments in Sect. 5, we define A using a Gaussian kernel operating on the differences
of the average similarities,

A(vjk, vlm) = e−(vjk−vlm)2/σ . (9)
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The choice of the Gaussian kernel for A in (6) has an intuitive interpretation.
When the average similarities vjk and vlm are close to each other (in the squared
difference sense), the Gaussian kernel weights their contribution to the regular-
ization more heavily. When the average similarities are far apart, their recip-
rocal regularizing influence is greatly diminished by the exponential decay of
the Gaussian. The effect is to emphasize the reciprocal influence of closely re-
lated average similarities and to discount unrelated mean values, thus preventing
unrelated tasks from introducing undue bias in the regularized estimates.

More generally, the task affinity may be mathematically-poorly-defined do-
main knowledge about how the classes in a particular problem relate to each
other. For example, in the insurgent rhetoric classification problem of Sect. 6,
we use side information to produce A based on a measure of relatedness between
groups that is proportional to number of communiqués jointly released by insur-
gent groups. The proposed approach can flexibly incorporate such a priori side
information about the tasks in the form of matrix A.

4 Related Work in Multi-task Learning

Many new multi-task learning (MTL) methods have been proposed and shown
to be useful for a variety of application domains [1, 2, 4, 13, 14, 23, 25, 34, 40].
Such methods comprise both discriminative and generative approaches that ei-
ther learn the relatedness between tasks or, like this work, assume that a task-
relatedness matrix is given.

Recently, multi-task learning research has focused on the problem of simul-
taneously learning multiple parametric models like multiple linear regression
tasks and multiple Gaussian process regression [2, 4, 14]. Some of these multi-
task methods jointly learn shared statistical structures, such as covariance, in a
Bayesian framework [4]. Zhang and Yeung [40] assumed there exists a (hidden)
covariance matrix for the task relatedness, and proposed a convex optimization
approach to estimate the matrix and the task parameters in an alternating way.
They develop their technique from a probabilistic model of the data and extend
it to kernels by mapping the data to a reproducing kernel Hilbert space.

For SVMs, multi-task kernels have been defined [27].Evgeniou et al. [13]
proposed a MTL framework for kernels that casts the MTL problem as a single-
task learning problem by constructing a special single kernel composed of the
kernels from each task. The tasks are learned and regularized simultaneously.

Sheldon [33] builds on the work of Evgeniou et al. [13] and proposes a graph-
ical multi-task learning framework where the tasks are nodes in a graph and the
task relatedness information is captured by a kernel defined as the pseudoin-
verse of the weighted graph Laplacian. This task kernel penalizes distant tasks
and shrinks more related tasks toward each other, but in practice must itself be
regularized to avoid overfitting. The concept of a task network is also taken up
by Kato et al. [23], who combine it with local constraints on the relatedness of
pairs of tasks in a conic programming formulation to simultaneously solve for
the tasks using kernel machines.
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A recent approach integrates semisupervised learning with multi-task learn-
ing [25]. In that work both unlabeled and labeled data contribute to the simul-
taneous estimation of multiple tasks, and their contribution is weighted by their
pairwise similarity,which is taken to be a radial basis kernel defined on the dif-
ference between feature vectors. We will not discuss in detail here related work
in domain adaptation methods and transfer learning [11], which we differentiate
as methods that compute some estimates for some tasks, and then regularize
estimates for new tasks to the previous tasks’ estimates.

The major difference between the existing and the proposed MTL approaches
is that the existing approaches do not target similarity-based classifiers. The
natural support for existing MTL methods is the Euclidean feature space, and
adapting them to similarity-based learning remains an open question beyond the
scope of this paper. In contrast, the proposed multi-task regularization naturally
operates in similarity space and is ideally suited for generative similarity-based
classifiers such as local SDA. Furthermore, as we discuss in Sect. 7, the proposed
multi-task regularization approach can be extended to standard Euclidean-space
classification and regression tasks.

5 Benchmark Classification Results

We compare the classification performance of the the multi-task regularized lo-
cal SDA classifiers to the standard single-task local SDA classifier, where the
chosen task affinity is the Gaussian kernel operating on the average similarities
(9). For comparison, we also report classification results for the k-NN classifier in
similarity space and for the SVM-KNN classifier, where the chosen SVM kernel
is the inner product of vectors of similarities-as-features. We report classification
results for six different benchmark similarity datasets from a variety of appli-
cations1. More classifier comparisons and details about these datasets can be
found in Chen et al. [9].

The Amazon problem is to classify books as fiction or non-fiction, where the
similarity between two books is the symmetrized percentage of customers who
bought the first book after viewing the second book. There are 96 samples in
this dataset, 36 from class non-fiction, and 60 from class fiction. This dataset
is especially interesting because the similarity function strongly violates the tri-
angle inequality and the minimality property of metrics (a sample should be
maximally similar to itself), because customers often buy a different book if
they first view a poorly-reviewed book.

The Aural Sonar problem is to distinguish 50 target sonar signals from 50
clutter sonar signals. Listeners perceptually evaluated the similarity between two
sonar signals on a scale from 1 to 5. The pairwise similarities are the sum of the
evaluations from two independent listeners, resulting in a perceptual similarity
from 2 to 10 [30]. Perceptual similarities are often non-metric, in that they do
not satisfy the triangle inequality.

1 Datasets and software available at http://staff.washington.edu/lucagc
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The Patrol problem is to classify 241 people into one of 8 patrol units based
on who people claimed was in their unit when asked to name five people in their
unit [12]. The self-similarity is set to 1. Like the Amazon dataset, this is a sparse
dataset and most of the similarities equal to zero.

The Protein problem is to classify 213 proteins into one of four protein classes
based on a sequence-alignment similarity [22].

The Voting problem is to classify 435 representatives into two political parties
based on their votes [3]. The categorical feature vector of yes/no/abstain votes
was converted into pairwise similarities using the value difference metric, which
is a dissimilarity designed to be useful for classification [36]. The voting similarity
is a pseudo-metric.

The Face Recognition problem consists of 945 sample faces of 139 people from
the NIST Face Recognition Grand Challenge data set. There are 139 classes, one
for each person. Similarities for pairs of the original three-dimensional face data
were computed as the cosine similarity between integral invariant signatures
based on surface curves of the face [15].

The six datasets are divided in 20 disjoint partitions of 80% training samples
and 20% test samples. For each of the 20 partitions of each dataset we chose
parameters using ten-fold cross-validation for each of the classifiers shown in
the tables. Cross-validation parameter sets were based on recommendations in
previously published papers and popular usage. The choice of neighborhood sizes
was {2, 4, 8, 16, 32, 64,min(n, 128)}. The regularizing parameter η and the kernel
bandwidth σ were cross-validated independently of each other among the choices
{10−3, 10−2, 0.1, 1, 10}.

Table 1 shows the mean error rates. Across five datasets multi-task local SDA
outperforms single-task local SDA (one dataset is a tie) and for all six datasets
it performs better than similarity k-NN. For Sonar and Voting, multi-task local
SDA brings the performance closer to SVM-KNN.

Table 1. Percent test error averaged over 20 random test/train splits for the benchmark
similarity datasets. Best results are in bold.

Amazon Sonar Patrol Protein Voting FaceRec
2 classes 2 classes 8 classes 4 classes 2 classes 139 classes

Multi-task Local SDA 8.95 14.50 11.56 9.77 5.52 3.44
Local SDA 11.32 15.25 11.56 10.00 6.15 4.23
Similarity k-NN 12.11 15.75 19.48 30.00 5.69 4.292

SVM-KNN (sims-as-features) 13.68 13.00 14.58 29.65 5.40 4.232

2 Results for k-NN and SVM-KNN were reported previously. The same train/test splits
were used, but the cross-validation parameters were slightly different. See Chen et
al. for details [9].
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6 Iraqi Insurgent Rhetoric Analysis

We address the problem of classifying the rhetoric of insurgent groups in Iraq.
The data consist of 1924 documents – translated jihadist websites or interviews
with insurgent officials – provided by the United States government’s Open
Source Center. We consider the problem of classifying each document as having
been released by one of eight insurgent groups operating in Iraq from 2003 to
2009.

Each document is represented by a 173-dimensional vector whose elements
contain the frequency of occurrence of 173 keywords in the document. The dictio-
nary of keywords was defined by one of the authors, who is an expert on insurgent
rhetoric analysis. The chosen document similarity was the symmetrized relative
entropy (symmetrized Kullback-Leibler divergence) of the normalized keyword
frequency vectors.

For this problem, we compared two definitions of the task relatedness. One,
we defined the task relatedness as proposed in Sect. 3. In addition, we derived
a task relatedness from side information about the number of communiqués
jointly released by two groups, shown in Table 2, where the j-th row and the
k-th column denote the number of communiqués jointly released by the j-th and
k-th insurgent groups. This side information was derived from a smaller, separate
dataset. A higher number of joint statements indicates more cooperation among
the leaders of the two groups and, typically, greater ideological affinity as well.
Note that some groups work in isolation, while others selectively choose their
collaborators.

Table 2. Number of Communiqués Jointly Released By Any Two Groups

G
ro

up
1

G
ro

up
2

G
ro

up
3

G
ro

up
4

G
ro

up
5

G
ro

up
6

G
ro

up
7

G
ro

up
8

Group 1 0 0 0 0 7 8 6 2
Group 2 0 0 0 0 0 0 0 0
Group 3 0 0 0 0 0 0 0 0
Group 4 0 0 0 0 0 0 0 1
Group 5 7 0 0 0 0 6 5 1
Group 6 8 0 0 0 6 0 5 1
Group 7 6 0 0 0 5 5 0 1
Group 8 2 0 0 1 1 1 1 0

We conjecture that an appropriate multi-task regularization is to shrink the
average document similarity estimates of more strongly connected groups toward
each other. Recall that for local SDA there are G2 mean-similarity constraints,
where G is the number of classes. Each constraint is associated with its corre-
sponding task of estimating the class-conditional marginal exponential pmf of
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the similarity between documents from group j and documents from group k,
and consequently the task relatedness matrix A has dimensions G2 × G2. In
this problem there are G = 8 insurgent groups. Let the 8 × 8 matrix given in
Table 2 be denoted by Q. We form the 64× 64 task relatedness A from the joint
communiqués Q as

A(vjk, vlm) = e−(Qjk−Qlm)2/σ . (10)

This choice of task relatedness implies that the mean document similarities vjk

and vlm should be strongly related if the number of joint communiqués released
by groups (j, k) is the same as the number released by groups (l,m), and should
be weakly related if the numbers differ greatly. Thus the task relatedness mea-
sures the similarity between pairs of insurgent groups. Furthermore, choosing a
Gaussian kernel operating on all possible differences of the entries in matrix Q
ensures that A is invertible.

Table 3 shows the leave-one-out cross-validation error rates for single-task,
multi-task local SDA, and similarity k-NN. The neighborhood size and the pa-
rameters η and σ were cross validated from parameter choices identical to the
benchmark datasets. In addition to the task relatedness derived from the side
information Q, we tested the Gaussian kernel operating directly on the class-
conditional document similarities in (9) without using any side information. For
both choices of task relatedness, the performance of multi-task local SDA pro-
vides a small gain over the standard local SDA and similarity k-NN.

Table 3. Percent leave-one-out cross-validation classification error for the insurgent
rhetoric document classification problem. Best result is in bold

Multi-task Local SDA (w/ joint statements task relatedness) 52.34
Multi-task Local SDA (w/ Gaussian kernel task relatedness) 52.75
Local SDA 54.52
Similarity k-NN 53.53
Guessing Using Class Priors 77.91

The communiqués-derived and the mean document similarity-derived task
relatedness definitions represent two approaches to capturing the relationships
between the insurgent groups. The former approach incorporates mathematically
poorly-defined side information about the problem available from a separate data
set, while the latter is purely data-driven from the document similarity data. The
multi-task local SDA can flexibly accommodate both types of task knowledge.
It is interesting that in this experiment both approaches lead to almost identical
classification improvement over single-task local SDA.

Finally, many other definitions of document similarity are possible. While
choosing the best similarity is an important practical problem, it is beyond the
scope of this paper. In any case, the SDA classification framework, single- or
multi-task, is independent of the chosen document similarity function, thus can
accommodate any future choice of document similarity.



12 Cazzanti, Feldman, Gupta, and Gabbay

7 Discussion and Open Questions

In this paper, we have proposed treating the estimation of different class-conditional
distributions in a generative model as multiple tasks, and shown that regularizing
these estimates together with a simple least-squares similarity-based regulariza-
tion can reduce classification errors.

It can be argued that regularizing the class-conditional distributions toward
each other according to their relatedness implies that the class-conditional local
SDA models are in fact correlated, which appears inconsistent with the assump-
tions that the class-conditional marginals in the SDA classifier (2) are indepen-
dent. It might be possible to model the correlations directly in the SDA model
without resorting to multi-task regularization, but this strategy must contend
with the concomitant problem of having to estimate the task correlations in
addition to the task-specific parameters, and makes the SDA classifier more
complex. In constrast, the proposed multi-task regularization does not impose
a particular structure on the task relatedness (i. e. correlation), which can be
provided as domain-specific knowledge or computed directly – not estimated –
from the task-specific parameters. We argue that this approach is more flexible,
because it does not require modifying the original classifer, and more general,
because it accommodates any problem-relevant task relatedness.

In the SDA model, the class-conditional pmf Pj(Tj(x)|k) models the similar-
ity of samples from class k to the samples of class j. Thus to tie the Pj(Tj(x)|k)
task to the Pm(Tm(x)|l) task, we need the relatedness between the pair of classes
(j , k) to the pair of classes (l ,m). A simpler model would be to tie together
tasks based only on one of the involved classes: Tie together the Pj(Tj(x)|k)
and Pm(Tm(x)|l) tasks based only on the relatedness between the k-th and m-th
classes or only on the relatedness between the j-th and l-th classes. Then the
task-relatedness would simply be the class-relatedness.

Side information about class relatedness could be used, like the group-relatedness
given in the group rhetoric analysis in Sect. 6. In the absence of side information,
class-relatedness could be produced by first running a single-task classifier (like
local SDA) and using the resulting class-confusion matrix as the task-relatedness
matrix for the multi-task classifier. However, an advantage to the approach we
took here of tying pairs of classes together is that we use the relatedness of both
the (j,k) pair and the (l,m) pair, and by using a Gaussian RBF kernel to form
A, an invertible A is always produced, ensuring a closed-form solution.

A more general nonparametric multi-task learning formulation would be

{y∗t }U
t=1 = arg min

{ŷt}U
t=1

U∑
t=1

Nt∑
i=1

L(yti, ŷt) + γJ
(
{ŷt}T

t=1

)
, (11)

where L is a loss function, J is a regularization function, U is the number of
tasks, and Nt is the number of data points from task t. However, an advantage
of the squared error formulation given in (6) is that is has a closed-form solution,
as given in Sect. 3.1.
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A number of theoretical questions can be asked about the proposed multi-
task framework. Many MTL methods have a Bayesian interpretation, in that
the task-specific random variables can be modeled as drawn from some shared
prior, such that joint shrinkage towards the mean of that prior is optimal. In our
cases, however, the shrinkages are mutual, and we hypothesize that an empirical
Bayesian perspective would be needed. Ideally, the assumed multi-task similari-
ties would perfectly represent the underlying statistical relatedness of the tasks.
For what types of statistical relatedness is the proposed multi-task learning op-
timal, and what would the corresponding optimal task relatedness look like?
Further, to what extent can one estimate an optimal task relatedness matrix of
interest from the statistics of the tasks, with or without side information?
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1. Agarwal, A., Daumé III, H., Gerber, S.: Learning multiple tasks using manifold
regularization. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Cu-
lotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 46–54
(2010)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Ma-
chine Learning 73(3), 243–272 (2008)

3. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://
www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html

4. Bonilla, E.V., Chai, K.M.A., Williams, C.K.I.: Multi-task Gaussian process pre-
diction. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural
Information Processing Systems. MIT Press, Cambridge, MA (2008)

5. Cazzanti, L., Gupta, M.R.: Local similarity discriminant analysis. In: Proc. Intl.
Conf. Machine Learning (2007)

6. Cazzanti, L., Gupta, M.R.: Regularizing the local similarity discriminant analysis
classifier. In: Proc. 8th Intl. Conf. Machine Learning and Applications (December
2009)

7. Cazzanti, L., Gupta, M.R., Koppal, A.J.: Generative models for similarity-based
classification. Pattern Recognition 41(7), 2289–2297 (July 2008)

8. Chen, J., Ye, J.: Training svm with indefinite kernels. Proc. of the Intl. Conf. on
Machine Learning (2008)

9. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based
classification: Concepts and algorithms. Journal of Machine Learning Research 10,
747–776 (March 2009)

10. Chen, Y., Gupta, M.R.: Learning kernels from indefinite similarities. Proc. of the
Intl. Conf. on Machine Learning (2009)
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