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ABSTRACT

We consider the problem of estimating class probabilities
for a given feature vector using nonparametric neighbor-
hood methods, such as k-nearest neighbors (k-NN). This
paper’s contribution is the application of minimum expected
risk estimates for neighborhood learning methods, an ana-
lytic formula for the minimum expected risk estimate for
weighted k-NN classifiers, and examples showing that the
difference can be significant.
keywords: Laplace correction, k-nearest neighbors, non-
parametric classification, minimum expected risk, LIME

1. INTRODUCTION

We consider the problem of estimating the probability dis-
tribution over class labels using nonparametric neighbor-
hood methods, such as k-nearest neighbors (k-NN). We ap-
ply Laplace correction to k-NN estimates, and give a more
general analytic formula for the minimum expected risk es-
timate for weighted k-NN classifiers. Simulations show that
the difference between such minimum expected risk esti-
mates and maximum likelihood estimation can be signifi-
cant.

Supervised statistical learning is based on a set of given
training pairsT = {Xi, Yi}, whereXi ∈ Rd andYi ∈ G,
whereG is a finite set of class labels. The classification
problem is to estimate the probability of each class for a test
feature vector,P (Y = g|X = x) for g ∈ G, based on the
given training set. There are many approaches to supervised
statistical learning, we focus here on nonparametric neigh-
borhood methods. Such methods are known to perform well
in practice, are intuitive, and can achieve optimal error rates
asymptotically [1]. Nonparametric neighborhood methods
weight the training samples in a neighborhood around the
test pointx. It is not important for this paper how one de-
fines a neighborhood; common definitions are to use thek-
nearest neighbors, or all neighbors within a defined radius.
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As is most common, we define thek-nearest neighbors in
terms of Euclidean distance. We assume that the sample
pairs are re-indexed by their distance, so thatXj is thejth
nearest neighbor tox. Given a neighborhood, a weighted
k-NN classifier assigns a weightwj to each neighbor, usu-
ally by evaluating a kernel which assigns weight based on
the distance fromx to Xj [1]. The k-NN classifier assigns
equal weights to every neighbor. Our formulation will hold
for any weighted k-NN classifier where the weights satisfy∑k

j=1 wj = 1 andwj ≥ 0. We will present results for the
symmetric tricube kernel, and a recent method which uses
linear interpolation and maximum entropy (LIME) [2],[3]
to assign weights asymmetrically to neighbors to satisfy the
linear interpolation equations.

From the weights and the neighborhood sample pairs, it
is standard to form a maximum likelihood (ML) estimate of
the probability of each class,

P̂ (Y = g|x) =
k∑

j=1

wjI(Yj=g) (1)

for g ∈ G, andI(·) is an indicator function that is one when

its argument is true. This creates an estimateP̂Y |x that
maximizes the “weighted likelihood” of the data samples
Y1, Y2, . . . , Yk seen in the neighborhood of the test feature
vectorx under the k-NN assumption that these local sam-
ples can be effectively utilized to estimate the class proba-
bilities givenX = x. However, maximum likelihood esti-
mates can be quite unrepresentative of the underlying likeli-
hood distribution, particularly when small sample sizes are
used. Near-neighbor algorithms are often run with small
neighborhood sizes which yields small sample sizes for the
estimation done in (1), and thus we hypothesize that a differ-
ent estimation principle could make a difference in practice.
See [4, pgs. 300-310] for a further discussion on problems
with maximum likelihood estimation.

Let us consider applying a different principle of estima-
tion to the near-neighbor context. Given any estimated pmf
q, if the truth is in fact some other pmfp, then the error
(or risk or cost) is some functionR(p, q). Minimizing the



expectation of a relevant riskR where the expectation is
taken over all possible pmf’sp is a more robust approach
to estimation. In this paper, we apply a Bayesian mini-
mum expected risk principle (MER) [5, ch. 4] to estimate
the class probabilities in weighted k-NN statistical learning.
Then, the MER estimate of the class conditional probability
q̂ solves

argmin
q

EPY |x [R(PY |x, q)] (2)

whereR is some function (such as mean-squared error, or
relative entropy) that measures the risk of estimating the
conditional class probability distribution to beq if the truth
is PY |x. Note that the expectation is overPY |x, this condi-
tional probability mass function is treated as a random vari-
able to form the estimate.

We focus on the two-class case,Y ∈ {0, 1}. Let the
estimated probability of a test pointx being class0 be θ̂.
Denote the probability of a test point being class0 as the
random variableΘ. A particular realization of the random
variableΘ will be denoted with the lower-case notationθ.
Then (2) can be re-written as,

argmin
θ̂

∫
R(θ, θ̂)f(θ)dθ, (3)

wheref(θ) is the probability ofθ. WhenR is chosen to be
the mean-squared error, then this is equivalent to Bayesian
minimum mean-squared error (BMMSE) parameter estima-
tion [6], which minimizes the expected posterior risk iff(θ)
is defined to be the posterior distribution ofΘ given thek
neighborhood samples.

For the k-NN classifier, we propose definingf(θ) to be
the likelihood of independently and identically drawing the
data seen in the neighborhood of feature vectorx so that

f(θ) = a
k!

m!(k −m!)
θm(1− θ)(k−m) (4)

wherem =
∑k

j=1 I(Yj=0) anda is a normalization con-
stant. This is equivalent to definingf(θ) to be the posterior
with a uniform prior onΘ. Then, the class probability dis-
tribution that solves (3) is, for either mean-squaredR or
relative entropyR,

P̂Y |x = {m + 1
k + 2

,
k −m + 1

k + 2
}. (5)

This estimation formula is equivalent toLaplace correction
[7, pg. 272], also calledLaplace smoothing, which has been
used to estimate class probabilities in decision trees [8] and
in speech recognition [9].

Equation (5) does not take into account the weightswj

that weighted neighborhood classifiers place on each train-
ing sample. For weighted k-NN classifiers, we propose that

f(θ) be the likelihood of drawing the neighborhood samples
with each neighborhood sample weighted bywj , so that

f(θ) =
k∏

j=1

θwjkI(Yj=0)(1− θ)wjkI(Yj=1) (6)

where we have dropped the normalization constant onf(θ)
since it will not affect the estimation’s minimization prob-
lem (2). We can re-writef(θ) as

f(θ) = θk
∑k

j=1 wjI(Yj=0)(1− θ)k
∑k

j=1 wjI(Yj=1) . (7)

Note that for k-NN the weights are uniform,wj = 1/k for
all j, and then the formulas (7) and (4) are equivalent (up to
a normalization constant). Solving (3) with the weighted-
data likelihoodf(θ) given in (7) yields,

P̂Y |x =

{
1 + k

∑k
j=1 wjI(Yj=0)

k + 2
,
1 + k

∑k
j=1 wjI(Yj=1)

k + 2

}
,

(8)
for either mean-squared errorR or relative entropyR. The
result (8) is in fact equivalent to (5) forwj = 1/k. Proofs
of (8) are given in the appendix for mean-squared errorR
and relative entropyR.

2. IS THE DIFFERENCE SIGNIFICANT?

The MER estimate (8) explicitly takes into account how
many data pointsk have been given, and the smallerk is, the
larger the difference between the MER and ML estimates.
In the limit of k → ∞, the ML and MER class probability
estimates for a test pointx converge. However, k-NN algo-
rithms are often run for small values ofk, includingk = 1.

As an example, ifk = 1 and that closest near neigh-
bor is from class one, then the ML estimate will beP̂ (Y =
1|x) = 1, while the MER estimate will be the more con-
servativeP̂ (Y = 1|x) = 2/3. This is the same situation
as flipping a coin once, seeing a head, and guessing that the
coin will only flip heads (ML) versus guessing that the coin
will flip heads2/3 of the time (MER). In general the MER
estimation using the likelihood forf(θ) will yield an esti-
mate that is the empirical distribution (θ̂ = m/k) pushed
towards the uniform distribution.

Nonparametric neighborhood methods threshold the class
probability estimates to estimate a class label corresponding
to a test pointx. For symmetric misclassification costs, the
threshold is set at .5. More generally, the cost is am × m
matrix for anm class problem, where theith, jth element
is C(i, j), the cost of estimating classi given the truth is
classj. For the two-class problem with class 0 and class
1, the classification thresholdt is theoretically optimally set
[1] to minimize expected cost at

t =
C(0, 1)

C(0, 1) + C(1, 0)
. (9)



In practical learning problems such as computer-aided di-
agnostics of medical problems, the costs can be extremely
asymmetric.

For a threshold oft = .5, the classification decision
will be unchanged given a MER or ML estimate ofPY |X .
The further the threshold is from.5 due to asymmetric mis-
classification costs, the larger the difference in the two esti-
mations. In the next section, we investigate how large these
differences can be in a simple classification problem by sim-
ulation.

3. SIMULATIONS

First, we evaluate the estimation error of the class probabil-
ity estimates, then we look at the difference in classification
error.

Consider a simple two-class classification simulation ex-
ample where training samplesXi ∈ Rd and test points
X ∈ Rd are drawn iid from class 0:N (0, Σ) or from class
1: N (0, 2Σ); where the covariance matrixΣ is thed × d
identity matrix and the classes are equally likely a priori.
The simulation was run with a number of training sample
sizes and for a number of feature dimension sizes; the re-
sults were consistent.

We evaluated the estimation difference using three non-
parametric neighborhood methods: k-NN, tricube weight-
ing [1], and linear interpolation with maximum entropy weights
(LIME) [2], [3]. The LIME classifier weights neighborhood
points with weights that solve

argmin
w


‖

k∑

j=1

wjXj − x‖22 − λH(w)


 (10)

whereH(w) is the Shannon entropy,H(w) = −∑
j wj log wj ,

and‖ · ‖2 is thelp norm withp = 2. The parameterλ can
be trained or cross-validated, or as a default,λ is set to be
very small.

The LIME objective (10) trades-off between two goals:
satisfying the linear interpolation equations, and maximiz-
ing the entropy of the weights. If the only goal were to
maximize the entropy of the weights, the weights would all
be equal, and LIME reduces to k-NN. The linear interpo-
lation equations require that the weights are chosen so that
the weighted neighbors have the test pointx as their cen-
ter of mass, that is, so

∑
j wjXj = x. These linear in-

terpolation equations are not always solvable, and thus the
LIME objective is to minimize the squaredl2 error between∑

k wjXj andx. Jointly determining the weights in this
way is helpful particularly when the distribution in feature
space of the neighbors is asymmetric. If two neighbors
are too close in feature space, they are each less informa-
tive, and they each get less weight from the linear interpo-
lation equations. Near-neighbors in sparse regions receive

relatively more weight. We conjecture that maximizing the
entropy of the weights helps keep the estimation variance
down, while solving the linear interpolation equations helps
reduce the estimation bias [3].

3.1. Probability estimation simulation

In this section we present results for the simulation described
above with a training set of 100 samples in three-dimensions
(d = 3). A test set of 100 samples was used to train the
number of neighborsk to use with each method, wherek
was chosen to minimize the mean-squared error of the es-
timates. Fig. 1 shows the performance of each estimation
method on the 100 sample test set ask grows. Oncek was
trained on this small test set, a validation run of 10,000 sam-
ples was run for each method with the method’s trainedk.
The entire simulation was run five times and the averaged
results are given in Table 1. For k-NN, the MER estimate
had 10% lower mean-squared error than ML. For the tricube
weighting, the MER improved performance by 34%. With
the LIME weighting, the improvement was roughly 4%.
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Fig. 1. For each classifier, the lines show MER performance
and the shapes (circle, x, or triangle) show the ML perfor-
mance in estimating the probabilities as the neighborhood
sizek is increased. The performance is the average mean-
squared error of the probability estimate on 100 test sam-
ples, based on 100 training samples.

The formulas given in (5) and (8) are also valid for rel-
ative entropy. However, in evaluating the relative entropy
performance, there is a problem that a single estimate of
θ̂ = 1 or θ̂ = 0 yields an infinite relative entropy which



Method Average error of probability estimates
ML k-NN .1066
MER k-NN .0959
ML tricube .12220
MER tricube .0803
ML LIME .0403
MER LIME .0388

Table 1. Comparison of average mean-squared error of the
class probability estimates for test points using the ML and
MER principles with k-NN, weighted k-NN with tricube
weights, and weighted k-NN with LIME weights.

throws any ”average relative entropy” off. The ML esti-
mates are often extreme, and thus for all the test sets sim-
ulated the ML estimates had ill-behaved average entropy.
The MER estimation does not result in extreme estimates,
and so the relative entropy of the MER estimates is always
well-behaved.

3.2. Classification simulation

In this section, the above Gaussian simulation is used to
present example classification results for a four-dimensional
(d = 4) case. For each classifier, the number of neighbors
k was trained on a set of 100 test samples and 100 train-
ing samples, where the trainedk corresponded to the fewest
classification errors at a threshold of .5.

For k-NN, the trained number of neighbors wask = 1;
for LIME, k = 9. The LIME parameterλ was set to the
default valueλ = 0.001. Then, 50,000 validation samples
were classified based on the trainedk.

We vary the classification threshold from .01 to .99, and
plot the ratio of the empirical cost of each classifier using the
ML principle to the empirical cost of each classifier using
the MER principle. As per (9), a thresholdt implies costs
of C(0, 1) = (1− t) andC(1, 0) = t.

Plotted in Fig. 2 is the ratio of the empirical costs; it
is seen that particularly for highly asymmetric costs the dif-
ference in MER and ML estimation can be quite large. It is
hard to generalize statistical learning performance, so these
simulation results stand as a proof-of-concept that the dif-
ference between the estimation methods can be significant.

4. DISCUSSION

In this paper we have suggested using a minimum expected
risk principle for weighted k-NN probability estimates and
classification. For uniformly weighted k-NN, this is equiv-
alent to applying Laplace smoothing. For classifiers that
weight neighborhood samples with nonuniform weights, we
provide a weighted likelihood function and derive an ana-
lytic formula for the MER estimate that is consistent with
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Fig. 2. Top: Ratio of ML and MER empirical misclas-
sification costs for uniformly weighted k-NN as the cost
threshold varies.Bottom: Ratio of ML and MER empiri-
cal misclassification costs for LIME as the cost threshold
varies.

the uniformly weighted case. It is seen that the probability
estimation can be more accurate with the new method.

For simplicity we focused on the two-class case. Pre-
liminary investigations show that the multi-class case will
be conceptually and mathematically very similar.

As analyzed in Friedman’s work [10], classification is
robust to large errors in probability estimation if the errors
are in the “right” direction, since the probability estimates
are thresholded. However, for asymmetric costs this pa-
per shows that the classification cost can be significantly
reduced using the MER estimation by forming an estimate
that minimizes either the expected mean-squared error or
relative entropy. In many practical applications, the costs
are asymmetric, and the presented results may be useful in
practice.



Appendix

Proof of (8) for mean-squaredR:
The objective of (3) withR = (θ − θ̂)2 is convex inθ̂, and
thus it suffices to compute its first derivative with respect to
θ̂ and set to zero. That yields

∫ 1

0
(θ − θ̂)θk

∑k
j=1 wjI(Yj=0)(1− θ)k

∑k
j=1 wjI(Yj=1)dθ

= 0.

Solving for θ̂,

θ̂ =

∫ 1

0
θ
1+k

∑k
j=1 wjI(Yj=0)(1− θ)k

∑k
j=1 wjI(Yj=1)dθ

∫ 1

0
θk

∑k
j=1 wjI(Yj=0)(1− θ)k

∑k
j=1 wjI(Yj=1)dθ

.

The above can be re-written in terms of beta functions,

θ̂ =
B(2 + k

∑k
j=1 wjI(Yj=0), 1 + k

∑k
j=1 wjI(Yj=1))

B(1 + k
∑k

j=1 wjI(Yj=0), 1 + k
∑k

j=1 wjI(Yj=1))
.

The above is simplified to the given result by expressing the
beta functions in terms of gamma functions, and using the
rule thatΓ(n) = (n− 1)Γ(n− 1).

Proof of (8) for relative entropyR:
The objective of (3) with

R = θ log
θ

θ̂
+ (1− θ) log

1− θ

1− θ̂

is convex inθ̂, and thus it suffices to compute its first deriva-
tive with respect tôθ and set to zero. That yields

∫ 1

0

(−θ

θ̂
+

1− θ

1− θ̂
)θk

∑k
j=1 wjI(Yj=0)(1−θ)k

∑k
j=1 wjI(Yj=1)dθ

= 0.

This is simplified using beta functions (and then gamma
functions) to

θ̂

1− θ̂
=

B(2 + k
∑k

j=1 wjI(Yj=0), 1 + k
∑k

j=1 wjI(Yj=1))

B(1 + k
∑k

j=1 wjI(Yj=0), 1 + k
∑k

j=1 wjI(Yj=1))

=
1 + k

∑k
j=1 wjI(Yj=0)

1 + k
∑k

j=1 wjI(Yj=1)

.

The above ratio can be solved forθ̂, yielding the given re-
sult.
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