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ABSTRACT As is most common, we define tlienearest neighbors in
terms of Euclidean distance. We assume that the sample
pairs are re-indexed by their distance, so tNatis the jth
nearest neighbor te. Given a neighborhood, a weighted

We consider the problem of estimating class probabilities
for a given feature vector using nonparametric neighbor-

hood methods, such as k-nearest neighbors (k-NN). Thlsk_NN classifier assigns a weight, to each neighbor, usu-

paper’s contribution is the application of minimum expected ally by evaluating a kernel which assigns weight based on

ns_k estimates for nelghporhood leaming _methoc_is, an and-,e distance from: to X; [1]. The k-NN classifier assigns
lytic formula for the minimum expected risk estimate for

) § o . equal weights to every neighbor. Our formulation will hold
Welghted k-NN cIa§S|f!¢rs, and examples showing that thefor any weighted k-NN classifier where the weights satisfy
difference can be significant.

k .
keywords: Laplace correction, k-nearest neighbors, non- Ej:l Wi = 1 andw; > 0. We will present results fqr the
parametric classification, minimum expected risk, LIME s_ymm_etrlc trlcul_ae kernel, an_d a recent method which uses
linear interpolation and maximum entropy (LIME) [2],[3]
to assign weights asymmetrically to neighbors to satisfy the
1. INTRODUCTION linear interpolation equations.
From the weights and the neighborhood sample pairs, it

We consider the problem of estimating the probability dis- js standard to form a maximum likelihood (ML) estimate of
tribution over class labels using nonparametric neighbor- the probability of each class,

hood methods, such as k-nearest neighbors (k-NN). We ap-

ply Laplace correction to k-NN estimates, and give a more R k

general analytic formula for the minimum expected risk es- PY =glz) = Z wjl(y;=g) )
timate for weighted k-NN classifiers. Simulations show that J=1

the difference between such minimum expected risk esti-for ¢ ¢ g, andI,, is an indicator function that is one when

mates and maximum likelihood estimation can be signifi- its argument is true. This creates an estimé;qm that

cant. _ . L . _maximizes the “weighted likelihood” of the data samples
_S_uperv!sed statistical learning is basegl on a set of giveny: 'y, ... Y seen in the neighborhood of the test feature

training p.alrs’T. = {X;,Y;}, wherel; € R® andY; ?g' _vectorz under the k-NN assumption that these local sam-
whereg is a finite set of class labels. The classification o5 can be effectively utilized to estimate the class proba-
problem is to estimate the probability of each class for a testy;j.ino given X — . However, maximum likelihood esti-
feature vectorP(Y = g|.X = z) for g € G, based onthe 1\ 105 can be quite unrepresentative of the underlying likeli-
given training set. There are many approaches to SgperY'se%ood distribution, particularly when small sample sizes are
statistical learning, we focus here on nonparametric neigh- ,qq Near-neighbor algorithms are often run with small
borhood methods. Such methods are known to perform well g0 h1horhood sizes which yields small sample sizes for the

in practicz_e, are intuitive, and can gchieye optimal error rates ostimation done in (1), and thus we hypothesize that a differ-
asymptotically [1]. Nonparametric neighborhood methods ¢ egtimation principle could make a difference in practice.

weight the training samples in a neighborhood around the g [4, pgs. 300-310] for a further discussion on problems
test pointz. It is not important for this paper how one de- with maximum likelihood estimation.

fines a neighborhood; common definitions are to usesthe Let us consider applying a different principle of estima-
nearest neighbors, or all neighbors within a defined rad'us'tion to the near-neighbor context. Given any estimated pmf
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expectation of a relevant risk where the expectation is  f(6) be the likelihood of drawing the neighborhood samples
taken over all possible pmf’s is a more robust approach with each neighborhood sample weighteduy so that

to estimation. In this paper, we apply a Bayesian mini- x

mum expected risk principle (MER) [5, ch. 4] to estimate 0) — guikIoy=0) (1 _ gywiklov, = 6

the class probabilities in weighted k-NN statistical learning. 1) E ( ) ©

Then, the MER estimate of the class conditional probability
G solves where we have dropped the normalization constanf (@

@) since it will not affect the estimation’s minimization prob-

argmin &/ R(Py|., .
g Py o [B(Py iz, q)] lem (2). We can re-writg (6) as

wher_eR is some function (such as me_an-squar_ed error, or ¢ (gy — gk Yy wiliv=0) (1- 0" S wilivy—n )
relative entropy) that measures the risk of estimating the
conditional class probability distribution to lygf the truth Note that for k-NN the weights are uniformy; = 1/k for

is Py|,. Note that the expectation is ov&% ,, this condi-  all j, and then the formulas (7) and (4) are equivalent (up to
tional probability mass function is treated as a random vari- @ normalization constant). Solving (3) with the weighted-
able to form the estimate. data likelihoodf (9) given in (7) yields,

We focus on the two-class casg, € {0,1}. Let the k k
estimated probability of a test pointbeing class) be 6. Py, = {1 tkY o wJI(Yj:O)7 1+ k) iy wily,=n 7
Denote the probability of a test point being clasas the k+2 k+2
random variable. A particular realization of the random (8)
variable® will be denoted with the lower-case notatign ~ for either mean-squared erréror relative entropyfz. The
Then (2) can be re-written as, result (8) is in fact equivalent to (5) fav; = 1/k. Proofs

of (8) are given in the appendix for mean-squared eRor
argmin/R(G,é)f(&)d@, 3) and relative entropyz.
6

2. IS THE DIFFERENCE SIGNIFICANT?
wheref(0) is the probability ofd. WhenR is chosen to be

the mean-squared error, then this is equivalent to Bayesiarmhe MER estimate (8) explicitly takes into account how
minimum mean-squared error (BMMSE) parameter estima- many data points have been given, and the smallds, the

tion [6], which minimizes the expected posterior risk {#)) larger the difference between the MER and ML estimates.
is defined to be the posterior distribution ©fgiven thek In the limit of £ — oo, the ML and MER class probability
neighborhood samples. estimates for a test pointconverge. However, k-NN algo-

For the k-NN classifier, we propose definifi¢f) to be rithms are often run for small values bfincludingk = 1.
the likelihood of independently and identically drawing the As an example, it = 1 and that closest near neigh-

data seen in the neighborhood of feature vegtso that bor is from class one, then the ML estimate WilIé(eY =
1|z) = 1, while the MER estimate will be the more con-
F(0) =a k! o™ (1 — g)k—m) () servativeP(Y = 1|z) = 2/3. This is the same situation
ml(k —m!) as flipping a coin once, seeing a head, and guessing that the

. _ o coin will only flip heads (ML) versus guessing that the coin
wherem = 3 ;_, I(y,—) @nda is a normalization con-  will flip heads2/3 of the time (MER). In general the MER
stant. This is equivalent to defininff6) to be the posterior  estimation using the likelihood fof(#) will yield an esti-

with a uniform prior on®. Then, the class probability dis- mate that is the empirical distributiod & m/k) pushed
tribution that solves (3) is, for either mean-squarecdr towards the uniform distribution.

relative entropyr, Nonparametric neighborhood methods threshold the class
A il k—mal probability e_zstimates to estim_ate a class_lgbe! corresponding
Py, ={—F, —— 1. (5) to a test point:. For symmetric misclassification costs, the
k+2" k+2 threshold is set at .5. More generally, the cost is & m

This estimation formula is equivalent taplace correction ~ Matrix for anm class problem, where thih, jth element

[7, pg. 272], also calletlaplace smoothingvhich has been 1S C(z_,g), the cost of estimating classglven the truth is

used to estimate class probabilities in decision trees [8] andclassj. For the two-class problem with class 0 and class

in speech recognition [9]. 1, the classification thresholds theoretically optimally set
Equation (5) does not take into account the weights |11 10 minimize expected cost at

that weighted neighborhood classifiers place on each train- C(0,1)

ing sample. For weighted k-NN classifiers, we propose that t= C(0,1) +C(1,0) ©)




In practical learning problems such as computer-aided di-relatively more weight. We conjecture that maximizing the

agnostics of medical problems, the costs can be extremelyentropy of the weights helps keep the estimation variance

asymmetric. down, while solving the linear interpolation equations helps

For a threshold of = .5, the classification decision reduce the estimation bias [3].

will be unchanged given a MER or ML estimate Bf| x .

The further the threshold is from due to asymmetric mis-

classification costs, the larger the difference in the two esti-

mations. In the next section, we investigate how large theseln this section we present results for the simulation described

differences can be in a simple classification problem by sim- above with a training set of 100 samples in three-dimensions

ulation. (d = 3). A test set of 100 samples was used to train the
number of neighbor& to use with each method, wheke

3. SIMULATIONS was chosen to minimize the mean-squared error of the es-

timates. Fig. 1 shows the performance of each estimation

First, we evaluate the estimation error of the class probabil-method on the 100 sample test sekagrows. Once: was

ity estimates, then we look at the difference in classification trained on this small test set, a validation run of 10,000 sam-
error. ples was run for each method with the method’s traiked

Consider a simple two-class classification simulation ex- The entire simulation was run five times and the averaged
ample where training samples; € R? and test points ~ results are given in Table 1. For k-NN, the MER estimate
X € R< are drawn iid from class QV/(0, X) or from class ~ had 10% lower mean-squared error than ML. For the tricube
1: N(0,2%); where the covariance matri is thed x ¢~ Weighting, the MER improved performance by 34%. With
identity matrix and the classes are equally likely a priori. the LIME weighting, the improvement was roughly 4%.
The simulation was run with a number of training sample

3.1. Probability estimation simulation

0.22

sizes and for a number of feature dimension sizes; the re- ®
sults were consistent. o . ' 02f Mean squared-error
We evaluated the estimation difference using three non- .| as k varied

parametric neighborhood methods: k-NN, tricube weight-

ing [1], and linear interpolation with maximum entropy weights
(LIME) [2], [3]. The LIME classifier weights neighborhood 01af %
points with weights that solve

0.
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whereH (w) is the Shannon entrop¥] (w) = — > ;wjlogw;, 00af o it xR0 K, K
and|| - ||2 is thel, norm withp = 2. The parametek can

. . . 0.02 L L L L L L
be trained or cross-validated, or as a defallis set to be 0 10 2 % 40 50 60 7o
very small.

The LIME objective (10) trades-off between two goals:
satisfying the linear interpolation equations, and maximiz-
ing the entropy of the weights. If the only goal were to Fig. 1. For each classifier, the lines show MER performance
maximize the entropy of the weights, the weights would all and the shapes (circle, x, or triangle) show the ML perfor-
be equal, and LIME reduces to k-NN. The linear interpo- mance in estimating the probabilities as the neighborhood
lation equations require that the weights are chosen so thakizek is increased. The performance is the average mean-
the weighted neighbors have the test poirds their cen-  squared error of the probability estimate on 100 test sam-
ter of mass, that is, s§:j w;X; = x. These linear in-  ples, based on 100 training samples.
terpolation equations are not always solvable, and thus the
LIME objective is to minimize the squarég error between
> w;X; andz. Jointly determining the weights in this
way is helpful particularly when the distribution in feature
space of the neighbors is asymmetric. If two neighbors  The formulas given in (5) and (8) are also valid for rel-
are too close in feature space, they are each less informaative entropy. However, in evaluating the relative entropy
tive, and they each get less weight from the linear interpo- performance, there is a problem that a single estimate of
lation equations. Near-neighbors in sparse regions received = 1 orfd = 0 yields an infinite relative entropy which
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Method Average error of probability estimate
ML k-NN .1066
MER k-NN .0959
ML tricube 12220
MER tricube .0803
ML LIME .0403
MER LIME .0388

N
o

w
o

w
o

N
131

ML cost/ MER cost
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Table 1. Comparison of average mean-squared error of the
class probability estimates for test points using the ML and
MER principles with k-NN, weighted k-NN with tricube
weights, and weighted k-NN with LIME weights.
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throws any "average relative entropy” off. The ML esti- % o1 o0z oz oa
mates are often extreme, and thus for all the test sets sim-
ulated the ML estimates had ill-behaved average entropy.
The MER estimation does not result in extreme estimates, o H
and so the relative entropy of the MER estimates is always
well-behaved.
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3.2. Classification simulation

In this section, the above Gaussian simulation is used to
present example classification results for a four-dimensional
(d = 4) case. For each classifier, the number of neighbors
k was trained on a set of 100 test samples and 100 train-
ing samples, where the trainédorresponded to the fewest
classification errors at a threshold of .5. it 1
For k-NN, the trained number of neighbors was- 1; 0 ‘ ‘ ‘ ‘ ‘ ‘
for LIME, & = 9. The LIME parametei was set to the o ot 0z 08 04 l@shold O %% % !
default value\ = 0.001. Then, 50,000 validation samples
were classified based on the trained Fig. 2 Top: Ratio of ML and MER empirical misclas-
We vary the classification threshold from .01 to .99, and sification costs for uniformly weighted k-NN as the cost
plot the ratio of the empirical cost of each classifier using the threshold varies.Bottom: Ratio of ML and MER empiri-
ML principle to the empirical cost of each classifier using cal misclassification costs for LIME as the cost threshold
the MER principle. As per (9), a threshaldmplies costs  varies.
of C(0,1) = (1 — t) andC(1,0) = ¢.
Plotted in Fig. 2 is the ratio of the empirical costs; it
is seen that particularly for highly asymmetric costs the dif- the uniformly weighted case. It is seen that the probability
ference in MER and ML estimation can be quite large. Itis estimation can be more accurate with the new method.
hard to generalize statistical learning performance, so these For simplicity we focused on the two-class case. Pre-
simulation results stand as a proof-of-concept that the dif- liminary investigations show that the multi-class case will
ference between the estimation methods can be significant.be conceptually and mathematically very similar.

As analyzed in Friedman’s work [10], classification is
4. DISCUSSION robust to large errors in probability estimation if the errors
are in the “right” direction, since the probability estimates

In this paper we have suggested using a minimum expectedare thresholded. However, for asymmetric costs this pa-
risk principle for weighted k-NN probability estimates and per shows that the classification cost can be significantly
classification. For uniformly weighted k-NN, this is equiv- reduced using the MER estimation by forming an estimate
alent to applying Laplace smoothing. For classifiers that that minimizes either the expected mean-squared error or
weight neighborhood samples with nonuniform weights, we relative entropy. In many practical applications, the costs
provide a weighted likelihood function and derive an ana- are asymmetric, and the presented results may be useful in
lytic formula for the MER estimate that is consistent with practice.

ML cost/ MER cost

2r LIME 1




Appendix

Proof of (8) for mean-squaredz: R
The objective of (3) with? = (9 — 6)? is convex infd, and

thus it suffices to compute its first derivative with respect to

6 and set to zero. That yields

f()l (0 _ é)ek Z;-c:l ij(Yj:(]) (1 _ o)k Zi?:l wjl(yjzl)de
0.

Solving ford,

L[l wilog=o (1 _ g)RE S wilog=n gy
0 =

fol 9’“2_’;’:1 w; I(szo) (1 _ e)kz_l;:l ij(Yj:1)d9 .
The above can be re-written in terms of beta functions,

k k
B(2 + ij:l 'lUjI(yj:o), 1 + ij:l wj.[(yj:l))

o= .
BO+ kY2 wiliv,—o) 1+ k Y5y wily,—1)

The above is simplified to the given result by expressing the
beta functions in terms of gamma functions, and using the

rule thatl'(n) = (n — 1)T'(n — 1).

Proof of (8) for relative entropyR:
The objective of (3) with

0 1-0
R=0log=+(1-0)lo —
g5 ( ) L

is convex ind, and thus it suffices to compute its first deriva-

tive with respect td and set to zero. That yields

1
/ (7? 1- 9)9’@2?:1 wa‘I(Yj:m(lfg)k S wilev=1) gg
o 6 1-9

=0.

This is simplified using beta functions (and then gamma

functions) to

é B(?"‘kz‘];:lu}j](y'j:o),l+kz;€:1 'U}]I(Y7:1))

1-6 B(l-i-k‘Z;c:l ’LUjI(yj:()),l-f—kZ;?zl ij(Y_,»:l))

LR wiliy o
1 + ]47 Z?:l ij(szl)

The above ratio can be solved féoryielding the given re-

sult.
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